

THE DIRICHLET PROBLEM FOR THE BRINKMAN SYSTEM IN SOBOLEV SPACES

DAGMAR MEDKOVÁ[†]

ABSTRACT. The Dirichlet problem for the Brinkman system and the Darcy-Forchheimer-Brinkman system are studied in $W^{s,q}(\Omega, \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ for bounded domains $\Omega \subset \mathbb{R}^m$ with Lipschitz boundary.

1. INTRODUCTION

The paper is devoted to the Dirichlet problem for the Brinkman system

(1.1)
$$-\Delta \mathbf{u} + \lambda \mathbf{u} + \nabla p = \mathbf{f}, \ \nabla \cdot \mathbf{u} = \chi \quad \text{in } \Omega$$

(1.2) $\mathbf{u} = \mathbf{g}$ on $\partial \Omega$

and for the Darcy-Forchheimer-Brinkman system

(1.3)
$$-\Delta \mathbf{u} + \lambda \mathbf{u} + a |\mathbf{u}| \mathbf{u} + b(\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}, \ \nabla \cdot \mathbf{u} = \chi \quad \text{in } \Omega.$$

Instead of the Dirichlet problem we shall study a bit more general nonlocal boundary condition

(1.4)
$$\mathbf{u} + \beta \int_{\Omega} \mathbf{u} \, \mathrm{d}x = \mathbf{g} \quad \text{on } \partial\Omega.$$

The problem is studied in Sobolev spaces $W^{s,q}(\Omega, \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ in bounded domains with Lipschitz boundary. Here $1 \leq s < \infty$ and $1 < q < \infty$. The boundary might be disconnected.

The Dirichlet problem for the Brinkman system in Sobolev spaces was studied in the following papers: [17] proves the existence of a solution in $H^{s+1/2}(\Omega; \mathbb{R}^m) \times H^{s-1/2}(\Omega)$ for 0 < s < 1 and a bounded domain $\Omega \subset \mathbb{R}^m$ with connected Lipschitz boundary. The same result was proved in [29] for a bounded domain $\Omega \subset \mathbb{R}^m$ with Lipschitz boundary formed by two components. [12] is devoted to solutions in $W^{2,q}(\Omega; \mathbb{R}^m) \times W^{1,q}(\Omega)$ for a bounded domain with smooth boundary and $1 < q < \infty$. The same problem is studied in [9] and [10] for a bounded domain $\Omega \subset \mathbb{R}^m$ with boundary of class $\mathcal{C}^{1,1}$. Y. Shibata studies this problem in [31] for domains with boundary formed by two components.

The papers [14] and [15] studied the Dirichlet problem for the homogeneous Darcy-Forchheimer-Brinkman system in $W^{s,2}(\Omega, \mathbb{R}^m) \times W^{s-1,2}(\Omega)$, where $1 \leq s < 3/2$, $\Omega \subset \mathbb{R}^m$ is a bounded domain with connected Lipschitz boundary and m = 2or m = 3. The same problem was studied in [29] for domains which boundary is

Article History

To cite this paper

²⁰⁰⁰ Mathematics Subject Classification. 35Q35.

Key words and phrases. Brinkman system; Dirichlet problem; Darcy-Forchheimer-Brinkman system; boundary layer potentials.

The work was supported by Czech Academy of Sciences RVO: 67985840.

Received : 29 October 2022; Revised : 20 November 2023; Accepted : 11 December 2023; Published : 26 December 2023

Dagmar Medková (2023). The Dirichlet Problem for the Brinkman System in Sobolev Spaces. International Journal of Mathematics, Statistics and Operations Research. 3(2), 327-346.

formed by two components. They supposed that a and b are positive constants, $\mathbf{f} \equiv 0, \ \chi \equiv 0 \text{ and}$

$$\int_{S} \mathbf{g} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = 0$$

for each component S of $\partial \Omega$.

In this paper we study the Brinkman system (1.1) in bounded domains $\Omega \subset \mathbb{R}^m$ with Lipschitz boundary. Instead of the Dirichlet condition (1.2) we have a bit more general nonlocal boundary condition (1.4). We find a necessary and sufficient condition for the existence of a solution in $W^{s,q}(\Omega,\mathbb{R}^m) \times W^{s-1,q}(\Omega)$ with $1 \leq s < \infty$ ∞ , $1 < q < \infty$ in the following cases:

- (1) s = 1 and q = 2.
- (2) $\Omega \subset \mathbb{R}^2$, s = 1 and 4/3 < q < 4. (3) $\Omega \subset \mathbb{R}^3$, s = 1 and 3/2 < q < 3.
- (4) $\partial \Omega$ is of class C^1 and s = 1.
- (5) $\partial \Omega$ is of class $\mathcal{C}^{k,1}$ with $k \in N$ and $s \leq k+1$.

We show that the velocity \mathbf{u} is unique and the pressure p is unique up to an additive constant. Then we get results for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman system using the fixed point theorem.

2. Function spaces

First we remember definitions of several function spaces.

Let $\Omega \subset \mathbb{R}^m$ be an open set. We denote by $\mathcal{C}^{\infty}_c(\Omega)$ the space of infinitely differentiable functions with compact support in Ω . If $k \in \mathbb{N}_0$, $1 < q < \infty$ we define the Sobolev space $W^{k,q}(\Omega) := \{f \in L^q(\Omega); \partial^{\alpha} f \in L^q(\Omega) \text{ for } |\alpha| \leq m\}$ endowed with the norm

$$\|u\|_{W^{k,q}(\Omega)} = \sum_{|\alpha| \le k} \|\partial^{\alpha} u\|_{L^{q}(\Omega)}.$$

(Clearly $W^{0,q}(\Omega) = L^q(\Omega)$.) If $s = k + \lambda$, $0 < \lambda < 1$ and $1 < q < \infty$ denote $W^{s,q}(\Omega) := \{ u \in W^{k,q}(\Omega); \|u\|_{W^{s,q}(\Omega)} < \infty \}$ where

$$\|u\|_{W^{s,q}(\Omega)} = \left[\|u\|_{W^{k,q}(\Omega)}^q + \sum_{|\alpha|=k_{\Omega\times\Omega}} \int \frac{|\partial^{\alpha}u(x) - \partial^{\alpha}u(y)|^q}{|x-y|^{m+q\lambda}} d(x,y) \right]^{1/q}.$$

Denote by $\mathring{W}^{k,p}(\Omega)$ the closure of $\mathcal{C}^{\infty}_{c}(\Omega)$ in $W^{k,p}(\Omega)$.

If X is a Banach space we denote by X' its dual space. If $0 < s < \infty$, denote $W^{-s,q}(\Omega) := [\mathring{W}^{s,q'}(\Omega)]'$, where q' = q/(q-1).

If $\Omega \subset V \subset \overline{\Omega}$ then we denote by $L^q_{\text{loc}}(V)$ the space of all measurable functions u on Ω such that $u \in L^q(\omega)$ for each bounded open set ω with $\overline{\omega} \subset V$.

If $\Omega \subset \mathbb{R}^m$ is an open set with compact Lipschitz boundary, $0 < s < 1, 1 < q < \infty$ ∞ , denote $W^{s,q}(\partial\Omega) = \{u \in L^q(\partial\Omega); \|u\|_{W^{s,q}(\partial\Omega)} < \infty\}$ where

$$\|u\|_{W^{s,q}(\partial\Omega)} = \left[\|u\|_{L^q(\partial\Omega)}^q + \int_{\partial\Omega\times\partial\Omega} \frac{|u(x) - u(y)|^q}{|x - y|^{m-1+qs}} d(x,y) \right]^{1/q}$$

Further, $W^{-s,q}(\partial\Omega) := [W^{s,q'}(\partial\Omega)]'$, where q' = q/(q-1).

We denote $\mathcal{C}_{c}^{\infty}(\Omega; \mathbb{R}^{m}) := \{(v_{1}, \ldots, v_{m}); v_{j} \in \mathcal{C}_{c}^{\infty}(\Omega)\}$. Similarly for other spaces of functions.

We say that $\Omega \subset \mathbb{R}^m$ is a domain if it is an open connected set.

Proposition 2.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded open set with Lipchitz boundary, $-\infty < t < s < \infty$ and $1 < q < \infty$. Then the identity I is a compact mapping from $W^{s,q}(\Omega)$ to $W^{t,q}(\Omega)$.

Proof. Suppose first that $0 \leq t$. Choose r and τ such that $t < \tau < r < s$ and τ , r are not integer. Then $I : W^{s,q}(\Omega) \to W^{r,q}(\Omega), I : W^{\tau,q}(\Omega) \to W^{t,q}(\Omega)$ continuously by [28, Chap. 2, §5.4, Lemma 5.4]. It is show in [37, Theorem 1.97] for Besov spaces that $I : B_r^{q,q}(\Omega) \to B_\tau^{q,q}(\Omega)$ compactly. But $W^{r,q}(\Omega) = B_r^{q,q}(\Omega), W^{\tau,q}(\Omega) = B_\tau^{q,q}(\Omega)$ by [7, Theorem 6.7]. So, $I : W^{s,q}(\Omega) \to W^{t,q}(\Omega)$ compactly.

Let now $s \leq 0$. Put q' = q/(q-1). We have proved that $W^{-t,q'}(\Omega) \hookrightarrow W^{-s,q'}(\Omega)$ compactly. So, $[W^{-s,q'}(\Omega)]' \hookrightarrow [W^{-t,q'}(\Omega)]'$ compactly by [27, § 15, Theorem 4]. Suppose now that f_n is a bounded sequence in $W^{s,q}(\Omega)$. According to [39, Chapter IV, §1, Theorem] there exist $\tilde{f}_n \in [W^{-s,q'}(\Omega)]'$ such that \tilde{f}_n are extensions of f_n and $\|\tilde{f}_n\| = \|f_n\|$. Since $[W^{-s,q'}(\Omega)]' \hookrightarrow [W^{-t,q'}(\Omega)]'$ compactly, there exists a sub-sequence $\tilde{f}_{n(k)}$ and $\tilde{f} \in [W^{-t,q'}(\Omega)]'$ such that $\tilde{f}_{n(k)} \to \tilde{f}$ in $[W^{-t,q'}(\Omega)]'$ as $k \to \infty$. So, $\tilde{f}_{n(k)} \to \tilde{f}$ in $W^{t,q}(\Omega)$ as $k \to \infty$. Therefore, the identity I is a compact mapping from $W^{s,q}(\Omega)$ to $W^{t,q}(\Omega)$.

If t < 0 and $0 \le s$, then $I : W^{s,q}(\Omega) \to L^q(\Omega)$ continuously and $I : L^q(\Omega) \to W^{t,q}(\Omega)$ compactly. If $t \le 0$ and 0 < s, then $I : W^{s,q}(\Omega) \to L^q(\Omega)$ compactly and $I : L^q(\Omega) \to W^{t,q}(\Omega)$ continuously. In both cases $I : W^{s,q}(\Omega) \to W^{t,q}(\Omega)$ compactly. \Box

Lemma 2.2. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 < p, q < \infty$ and $0 < s < \infty$. If sp < m suppose moreover that $q \leq mp/(m - sp)$. Then $W^{s,p}(\Omega) \hookrightarrow L^q(\Omega)$.

Proof. Suppose first that $s \in \mathbb{N}$. Then $W^{s,p}(\Omega) \hookrightarrow L^q(\Omega)$ by [19, Theorem 5.7.7].

Let now $s \notin \mathbb{N}$. Then $W^{s,p}(\Omega)$ is equal to the Besov space $B^{p,p}_s(\Omega)$ by ([7, Theorem 6.7]). If sp > m then $W^{s,p}(\Omega) = B^{p,p}_s(\Omega) \hookrightarrow L^q(\Omega)$ by [1, Theorem 7.34]. If $sp \leq m$ then $W^{s,p}(\Omega) = B^{p,p}_s(\Omega) \hookrightarrow L^q(\Omega)$ by [35, §46.2, Theorem]. \square

3. VOLUME POTENTIAL

Let $\lambda \geq 0$. Then there exists a unique fundamental solution $E^{\lambda} = (E_{ij}^{\lambda}), Q^{\lambda} = (Q_i^{\lambda})$ of the Brinkman system

(3.1)
$$-\Delta \mathbf{u} + \lambda \mathbf{u} + \nabla p = 0, \quad \nabla \mathbf{u} = 0$$

in \mathbb{R}^m such that $E^{\lambda}(x) = o(|x|), Q^{\lambda}(x) = o(|x|)$ as $|x| \to \infty$. (Here $\Delta f = \partial_1^2 f + \partial_2^2 f + \cdots + \partial_m^2 f$ is the Laplace operator of f.) Remember that for $i, j \in \{1, \ldots, m\}$ we have

$$-\Delta E_{ij}^{\lambda} + \lambda E_{ij}^{\lambda} + \partial_i Q_j^{\lambda} = \delta_{ij} \delta_0, \quad \partial_1 E_{1j}^{\lambda} + \dots \partial_m E_{mj}^{\lambda} = 0,$$

$$\Delta E_{i,m+1}^{\lambda} + \lambda E_{i,m+1}^{\lambda} + \partial_i Q_{m+1}^{\lambda} = 0, \quad \partial_1 E_{1,m+1}^{\lambda} + \dots \partial_m E_{m,m+1}^{\lambda} = \delta_0$$

Clearly,

$$E^{\lambda}(-x) = E^{\lambda}(x), \quad Q^{\lambda}(-x) = -Q^{\lambda}(x).$$

If $j \in \{1, \ldots, m\}$ then

$$Q_j^{\lambda}(x) = E_{j,m+1}^{\lambda}(x) = \frac{1}{\sigma_m} \frac{x_j}{|x|^m},$$

$$Q_{m+1}^{\lambda} = \begin{cases} \delta_0(x) + (\lambda/\sigma_m) \ln |x|^{-1}, & m = 2, \\ \delta_0(x) + (\lambda/\sigma_m)(m-2)^{-1} |x|^{2-m}, & m > 2, \end{cases}$$

where σ_m is the area of the unit sphere in \mathbb{R}^m . (See [38, p. 60].) The expressions of E^{λ} can be found in the book [38, Chapter 2]. We omit them for the sake of brevity.

For $\lambda = 0$ we obtain the fundamental solution of the Stokes system. If $i, j \in \{1, \ldots, m\}$, the components of E^0 are given by

(3.2)
$$E_{ij}^{0}(x) = \frac{1}{2\sigma_m} \left\{ \frac{\delta_{ij}}{(m-2)|x|^{m-2}} + \frac{x_i x_j}{|x|^m} \right\}, \quad m \ge 3$$

(3.3)
$$E_{ij}^{0}(x) = \frac{1}{4\pi} \left\{ \delta_{ij} \ln \frac{1}{|x|} + \frac{x_j x_k}{|x|^2} \right\}, \quad m = 2,$$

(see, e.g., [38, p. 16]).

If $i, j \leq m$ then

$$E_{ij}^{\lambda} = E_{ji}^{\lambda},$$
$$|E_{ij}^{\lambda}(x) - E_{ij}^{0}(x)| = O(1) \quad \text{as } |x| \to 0$$

by [38, p. 66] and

$$|\nabla E_{ij}^{\lambda}(x) - \nabla E_{ij}^{0}(x)| = O(|x|^{2-m}) \quad \text{as } |x| \to 0$$

by [21, Lemma 4.1].

If $i, j \leq m$ and $\lambda > 0$, then

$$\partial^{\alpha} E_{ij}^{\lambda}(x) = O(|x|^{-m-|\alpha|}), \quad |x| \to \infty$$

for each muliindex α . (See [18, Lemma 3.1].)

If $\mathbf{f} = (f_1, \ldots, f_m)$ where f_1, \ldots, f_m and g are distributions in \mathbb{R}^m with compact support and $\lambda \ge 0$, then

$$\mathbf{v} := E^{\lambda} * \begin{pmatrix} \mathbf{f} \\ g \end{pmatrix}, \qquad p := Q^{\lambda} * \begin{pmatrix} \mathbf{f} \\ g \end{pmatrix}$$

are well defined and

$$-\Delta \mathbf{v} + \lambda \mathbf{v} + \nabla p = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = g \quad \text{in } \mathbb{R}^m$$

We denote $Q(x) = (Q_1^0(x), \ldots, Q_m^0(x)) = (Q_1^{\lambda}(x), \ldots, Q_m^{\lambda}(x))$. By \tilde{E}^{λ} we denote the matrix of the type $m \times m$, where $\tilde{E}_{ij}^{\lambda}(x) = E_{ij}^{\lambda}(x)$ for $i, j \leq m$.

Proposition 3.1. Let $\varphi, \psi \in \mathcal{C}_c^{\infty}(\mathbb{R}^m)$, $1 < q < \infty$ and $s \in \mathbb{R}^1$. Then there exists a constant C such that if $\mathbf{f} \in W^{s,q}(\mathbb{R}^m; \mathbb{R}^m)$ then $\varphi[Q * (\psi \mathbf{f})] \in W^{s+1,q}(\mathbb{R}^m)$ and

(3.4)
$$\|\varphi[Q*(\psi\mathbf{f})]\|_{W^{s+1,q}(\mathbb{R}^m)} \le C \|\mathbf{f}\|_{W^{s,q}(\mathbb{R}^m)}$$

Proof. Let h_{Δ} be the fundamental solution of the Laplace equation given by

$$h_{\Delta}(x) := \begin{cases} \sigma_2^{-1} \ln |x|, & m = 2, \\ (2-m)^{-1} \sigma_m^{-1} |x|^{2-m}, & m > 2 \end{cases}$$

Then $Q_j = \partial_j h_{\Delta}$. Thus $Q_j * (\psi f_j) = (\partial_j h_{\Delta}) * (\psi f_j) = \partial_j [h_{\Delta} * (\Psi f_j)]$. So,

$$\varphi[Q*(\psi\mathbf{f})] = \sum_{j=1}^{m} \{\partial_j [\varphi h_\Delta * (\Psi f_j)] - (\partial_j \varphi) [h_\Delta * (\Psi f_j)] \}.$$

[23, Proposition 3.18.5], [8, Lemma 6.36] and [13, Lemma 1.4.1.3] give that $\varphi[Q * (\psi \mathbf{f})] \in W^{s+1,q}(\mathbb{R}^m)$ and the estimate (3.4) holds.

Proposition 3.2. Let $0 < \lambda < \infty$, $1 < q < \infty$, $s \in \mathbb{R}^1$. Then the mapping $\mathbf{f} \mapsto \tilde{E}^{\lambda} * \mathbf{f}$ for $\mathbf{f} \in \mathcal{C}^{\infty}_c(\mathbb{R}^m, \mathbb{R}^m)$ can be extended by a unique way as a bounded linear operator from $W^{s,q}(\mathbb{R}^m, \mathbb{R}^m)$ to $W^{s+2,q}(\mathbb{R}^m, \mathbb{R}^m)$.

(See [22, Proposition 6.1].)

Proposition 3.3. Let $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^m)$, $1 < q < \infty$ and $s \in \mathbb{R}^1$. Then there exists a constant C such that if $\mathbf{f} \in W^{s,q}(\mathbb{R}^m; \mathbb{R}^m)$ then $\varphi[\tilde{E}^0 * (\psi \mathbf{f})] \in W^{s+2,q}(\mathbb{R}^m; \mathbb{R}^m)$ and

$$\|\varphi[E^0*(\psi\mathbf{f})]\|_{W^{s+2,q}(\mathbb{R}^m)} \le C\|\mathbf{f}\|_{W^{s,q}(\mathbb{R}^m)}.$$

Proof. Let $k \in N_0$, $\mathbf{f} \in W^{k,q}(\mathbb{R}^m; \mathbb{R}^m)$. Then

$$\Delta[\tilde{E}^0 * (\psi \mathbf{f})] = \nabla[Q * (\psi \mathbf{f})] - \psi \mathbf{f} \in W^{k,q}_{\text{loc}}(\mathbb{R}^m; \mathbb{R}^m)$$

by the definition of a fundamental solution and Proposition 3.1. Hence $\tilde{E}^0 * (\psi \mathbf{f}) \in W^{k+2,q}_{\text{loc}}(\mathbb{R}^m;\mathbb{R}^m)$ by [23, Proposition 3.18.3 and Proposition 3.18.2]. Denote $V_{\varphi,\psi}\mathbf{f} = \varphi[\tilde{E}^{\lambda} * (\psi \mathbf{f})]$. Then $V_{\varphi,\psi} : W^{k,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{k+2,q}(\mathbb{R}^m;\mathbb{R}^m)$. If $\mathbf{f}_n \to \mathbf{f}$ in $W^{k,q}(\mathbb{R}^m;\mathbb{R}^m)$ and $V_{\varphi,\psi}\mathbf{f}_n \to \mathbf{g}$ in $W^{k+2,q}(\mathbb{R}^m;\mathbb{R}^m)$, then $V_{\varphi,\psi}\mathbf{f} = \mathbf{g}$ because the convolution is continuous in the sense of distributions. So, $V_{\varphi,\psi} : W^{k,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{k+2,q}(\mathbb{R}^m;\mathbb{R}^m)$ is a bounded operator by the Closed graph theorem ([30, Theorem 3.10]).

Let $k \in N_0$. Denote q' = q/(q-1). Then $W^{k,q'}(\mathbb{R}^m) = \mathring{W}^{k,q'}(\mathbb{R}^m)$ by [34, §2.3.3], [35, §2.12, Theorem] and [2, Theorem 4.2.2]. Since $V_{\psi,\phi}: W_0^{k,q'}(\mathbb{R}^m;\mathbb{R}^m) \to W_0^{k+2,q'}(\mathbb{R}^m;\mathbb{R}^m)$ is bounded, the adjoint operator $[V_{\psi,\varphi}]': W^{-k-2,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{-k,q}(\mathbb{R}^m;\mathbb{R}^m)$ is bounded, too. If $\mathbf{g}, \mathbf{h} \in \mathcal{C}^{\infty}_c(\mathbb{R}^m;\mathbb{R}^m)$ then

$$\int_{\mathbb{R}^m} \mathbf{g}(x) V_{\psi,\varphi} \mathbf{f}(x) \, \mathrm{d}x = \int_{\mathbb{R}^m} \mathbf{f}(y) V_{\varphi,\psi} \mathbf{g}(y) \, \mathrm{d}y,$$

because $\tilde{E}^0(-x) = \tilde{E}^0(x)$ and $\tilde{E}^0_{ij} = \tilde{E}^0_{ji}$ by (3.2) and (3.3). Thus $V_{\varphi,\psi} = [V_{\psi,\varphi}]'$: $W^{-k-2,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{-k,q}(\mathbb{R}^m;\mathbb{R}^m)$ is bounded.

According to According to $[35, \S2.4.2, \text{Theorem 1}]$ and [2, Theorem 4.2.2] one has

$$(L^{q}(\mathbb{R}^{m}), W^{2,q}(\mathbb{R}^{m}))_{1/2} = W^{1,q}(\mathbb{R}^{m}), \quad (W^{-2,q}(\mathbb{R}^{m}), L^{q}(\mathbb{R}^{m}))_{1/2} = W^{-1,q}(\mathbb{R}^{m}).$$

Since $V_{\varphi,\psi}: L^q(\mathbb{R}^m;\mathbb{R}^m) \to W^{2,q}(\mathbb{R}^m;\mathbb{R}^m), V_{\varphi,\psi}: W^{-2,q}(\mathbb{R}^m;\mathbb{R}^m) \to L^q(\mathbb{R}^m;\mathbb{R}^m)$ are bounded, [1, p. 248] gives that $V_{\varphi,\psi}: W^{-1,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{1,q}(\mathbb{R}^m;\mathbb{R}^m)$ is bounded.

Suppose that s is not integer. Choose $k \in N$ such that |s| < k. Put $\theta = (s+k+2)/(2k+2)$. Then

$$(W^{-k-2,q}(\mathbb{R}^m), W^{k,q}(\mathbb{R}^m))_{\theta,q} = W^{s,q}(\mathbb{R}^m),$$
$$(W^{-k,q}(\mathbb{R}^m), W^{k+2,q}(\mathbb{R}^m))_{\theta,q} = W^{s+2,q}(\mathbb{R}^m)$$

by [7, Theorem 6.7] and [36, §2.4.2, Theorem]. Since $V_{\varphi,\psi}: W^{k,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{k+2,q}(\mathbb{R}^m;\mathbb{R}^m), V_{\varphi,\psi}: W^{-k-2,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{-k,q}(\mathbb{R}^m;\mathbb{R}^m)$ are bounded operators, [32, Lemma 22.3] gives that $V_{\varphi,\psi}: W^{s,q}(\mathbb{R}^m;\mathbb{R}^m) \to W^{s+2,q}(\mathbb{R}^m;\mathbb{R}^m)$ is a bounded operator.

4. BRINKMAN SINGLE LAYER POTENTIAL

Let now $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary. If $1 < q < \infty$ and $\mathbf{g} \in L^q(\partial\Omega, \mathbb{R}^m)$ then the single-layer potential for the Brinkman system $E_{\Omega}^{\lambda}\mathbf{g}$ and its associated pressure potential $Q_{\Omega}\mathbf{g}$ are given by

$$E_{\Omega}^{\lambda} \mathbf{g}(x) := \int_{\partial \Omega} \tilde{E}^{\lambda}(x-y) \mathbf{g}(y) \, \mathrm{d}\sigma(y),$$
$$Q_{\Omega} \mathbf{g}(x) := \int_{\partial \Omega} Q(x-y) \mathbf{g}(y) \, \mathrm{d}\sigma(y).$$

More generally, if $\mathbf{g} = (g_1, \ldots, g_m)$, where g_j are distributions supported on $\partial \Omega$ then we define

$$E_{\Omega}^{\lambda}\mathbf{g}(x) := \langle \mathbf{g}, \tilde{E}^{\lambda}(x-\cdot) \rangle, \quad Q_{\Omega}\mathbf{g}(x) := \langle \mathbf{g}, Q(x-\cdot) \rangle.$$

Remark that $(E_{\Omega}^{\lambda}\mathbf{g}, Q_{\Omega}\mathbf{g})$ is a solution of the Brinkman system (3.1) in the set $\mathbb{R}^m \setminus \partial \Omega$.

Lemma 4.1. Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary, $0 < \lambda < \infty$ and $1 < q < \infty$. Then E_{Ω}^{λ} is a bounded linear operator from $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ to $W^{1,q}(\Omega; \mathbb{R}^m)$. If $\mathbf{g} \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ then $Q_{\Omega}\mathbf{g} \in L^q_{loc}(\mathbb{R}^m)$. If Ω is bounded then E_{Ω}^0 is a bounded linear operator from $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ to $W^{1,q}(\Omega; \mathbb{R}^m)$.

Proof. Put q' = q/(q-1). The trace operator γ_{Ω} is a bounded operator from $W^{1,q'}(\Omega)$ to $W^{1-1/q'}(\partial\Omega)$ by [19, Theorem 6.8.13]. For $\mathbf{g} \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ define $P\mathbf{g} \in W^{-1,q}(\mathbb{R}^m; \mathbb{R}^m)$ by

$$\langle P\mathbf{g}, \Psi \rangle := \langle \mathbf{g}, \gamma_{\Omega} \Psi \rangle, \qquad \Psi \in W^{1,q'}(\mathbb{R}^m; \mathbb{R}^m).$$

Since $E_{\Omega}^{\lambda} \mathbf{g} = \tilde{E}^{\lambda} * (P\mathbf{g})$ and $P : W^{-1/q,q}(\partial\Omega; \mathbb{R}^m) \to W^{-1,q}(\mathbb{R}^m; \mathbb{R}^m)$ is bounded, Proposition 3.2 gives that E_{Ω}^{λ} is a bounded linear operator from $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ to $W^{1,q}(\Omega; \mathbb{R}^m)$. Since $Q_{\Omega}\mathbf{g} = Q * (P\mathbf{g})$, Proposition 3.1 gives that $Q_{\Omega}\mathbf{g} \in L_{loc}^q(\mathbb{R}^m)$ for $\mathbf{g} \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$.

Suppose now that Ω is bounded. Since $E_{\Omega}^{0}\mathbf{g} = \tilde{E}^{0} * (P\mathbf{g})$, Proposition 3.3 gives that E_{Ω}^{0} is a bounded linear operator from $W^{-1/q,q}(\partial\Omega;\mathbb{R}^{m})$ to $W^{1,q}(\Omega;\mathbb{R}^{m})$. \Box

We denote by $\mathcal{E}_{\Omega}^{\lambda} \mathbf{g}$ the trace of $E_{\Omega}^{\lambda} \mathbf{g}$ on $\partial \Omega$.

Proposition 4.2. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with Lipschitz boundary and 4/3 < q < 4. Denote by X the set of all vector functions \mathbf{f} on $\partial\Omega$ such that for each component S of $\partial\Omega$ there exists a constant c_S with $\mathbf{f} = c_S \mathbf{n}^{\Omega}$ on S; $Y = \{\mathbf{g} \in W^{1-1/q,q}(\partial\Omega, \mathbb{R}^2); \int_{\partial\Omega} \mathbf{g} \cdot \mathbf{f} d\sigma = 0 \ \forall \mathbf{f} \in X\}$. For $\mathbf{f} = (f_1, f_2) \in W^{-1/q,q}(\partial\Omega, \mathbb{R}^2)$ and $\mathbf{c} \in \mathbb{R}^2$ denote

(4.1)
$$\tilde{E}_{\Omega}(\mathbf{f}, \mathbf{c}) = \left[\mathcal{E}_{\Omega}^{0} \mathbf{f} + \mathbf{c}, \left(\langle f_{1}, 1 \rangle_{\partial \Omega}, \langle f_{2}, 1 \rangle_{\partial \Omega} \right) / \int_{\partial \Omega} 1 \, \mathrm{d}\sigma \right].$$

Then $\tilde{E}_{\Omega}: [W^{-1/q,q}(\partial\Omega,\mathbb{R}^2)/X] \times \mathbb{R}^2 \to Y \times \mathbb{R}^2$ is an isomorphism.

Proof. Put s = 1 - 1/q. Then 1/q - (s - 1/2) = 1/q - (1 - 1/q) + 1/2 = 2/q - 1/2 = (4-q)/(2q) > 0 because 4 > q. Further, (s+1/2)-1/q = 3/2-2/q = (3q-4)/(2q) > 0 because 4/3 < q. Using $W^{t,q}(\partial\Omega) = B_t^{q,q}(\partial\Omega)$ for $t \notin \mathcal{Z}$ (see for example [7, Theorem 6.7]), we get by [26, Theorem 10.5.3] that $\tilde{E}_{\Omega} : [W^{-1/q,q}(\partial\Omega, \mathbb{R}^2)/X] \times \mathbb{R}^2 \to Y \times \mathbb{R}^2$ is an isomorphism.

Proposition 4.3. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with Lipschitz boundary and 3/2 < q < 3. Denote by X the set of all vector functions \mathbf{f} on $\partial\Omega$ such that for each component S of $\partial\Omega$ there exists a constant c_S with $\mathbf{f} = c_S \mathbf{n}^{\Omega}$ on S; $Y = \{\mathbf{g} \in W^{1-1/q,q}(\partial\Omega, \mathbb{R}^3); \int_{\partial\Omega} \mathbf{g} \cdot \mathbf{f} d\sigma = 0 \ \forall \mathbf{f} \in X\}$. Then $\mathcal{E}_{\Omega}^0 : W^{-1/q,q}(\partial\Omega, \mathbb{R}^3)/X \to Y$ is an isomorphism.

Proof. Put s = 1 - 1/q. Then 1/q - s/2 = 1/q - [1/2 - 1/(2q)] = (3 - q)/(2q) > 0because 3 > q. Further, (s/2+1/2)-1/q = 1/2-1/(2q)+1/2-1/q = (2q-3)/(2q) > 0because 3/2 < q. Using $W^{t,q}(\partial \Omega) = B_t^{q,q}(\partial \Omega)$ for $t \notin \mathcal{Z}$ (see for example [7, Theorem 6.7]), we get by [26, Theorem 10.5.3] that $\mathcal{E}_{\Omega}^0 : W^{-1/q,q}(\partial \Omega, \mathbb{R}^3)/X \to Y$ is an isomorphism. □

5. Boundary value problem for the Brinkman system

We begin with some auxiliary results.

Lemma 5.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary and $1 < q < \infty$. If $\mathbf{u} \in W^{1,q}(\Omega; \mathbb{R}^m)$ then

(5.1)
$$\int_{\Omega} \nabla \cdot \mathbf{u} \, \mathrm{d}x = \int_{\partial \Omega} \mathbf{u} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma$$

Proof. If $\mathbf{u} \in \mathcal{C}^{\infty}(\mathbb{R}^m; \mathbb{R}^m)$ then the Green formula gives (5.1). Since $\mathcal{C}^{\infty}(\mathbb{R}^m)$ is a dense subset of $W^{1,q}(\Omega)$ by [1, Theorem 3.22] and the trace is a continuous operator from $W^{1,q}(\Omega)$ to $W^{1-1/q,q}(\partial\Omega)$ by [13, Theorem 1.5.1.2], we infer that (5.1) holds for $\mathbf{u} \in W^{1,q}(\Omega; \mathbb{R}^m)$.

Lemma 5.2. Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary. Let G be a bounded component of $\mathbb{R}^m \setminus \overline{\Omega}$ and $z \in G$. Define $\mathbf{w}(x) := (x - z)/|x - z|^m$. Then $\Delta \mathbf{w} = 0$, $\nabla \cdot \mathbf{w} = 0$ in $\mathbb{R}^m \setminus \{z\}$ and

$$\int_{\partial G} \mathbf{w} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = -\sigma_m$$

where \mathbf{n}^{Ω} denotes the unit exterior normal of Ω and σ_m is the surface of the unit sphere in \mathbb{R}^m .

Proof. $\mathbf{w}(x) = C_1 \nabla h(x-z)$ where C_1 is a constant and $h(x) = \ln |x|$ for m = 2and $h(x) = |x|^{2-m}$ for m > 2. Since $\Delta h = 0$ in $\mathbb{R}^m \setminus \{0\}$, we infer that $\Delta \mathbf{w} = 0$, $\nabla \cdot \mathbf{w} = 0$ in $\mathbb{R}^m \setminus \{z\}$.

Fix r > 0 such that for $B := \{x; |x - z| < r\}$ we have $\overline{B} \subset G$. Since $\nabla \cdot w = 0$ in $D := G \setminus \overline{B}$, Lemma 5.1 gives

$$\int_{\partial G} \mathbf{w} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = -\int_{\partial D} \mathbf{w} \cdot \mathbf{n}^{D} \, \mathrm{d}\sigma - \int_{\partial B} \mathbf{w} \cdot \mathbf{n}^{B} \, \mathrm{d}\sigma = -\int_{D} \nabla \cdot \mathbf{w} \, \mathrm{d}x$$
$$-\int_{\partial B} \frac{x-z}{|x-z|^{m}} \cdot \frac{x-z}{|x-z|} \, \mathrm{d}\sigma = 0 - \int_{\partial B} |x-z|^{1-m} \, \mathrm{d}\sigma = -\sigma_{m}.$$

Proposition 5.3. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary and $2 \leq m \leq 3$. Let $q \in (4/3, 4)$ for m = 2, and $q \in (3/2, 3)$ for m = 3. Let $\lambda = 0$. If $\mathbf{f} \in W^{-1,q}(\Omega; \mathbb{R}^m)$, $\chi \in L^q(\Omega)$ and $\mathbf{g} \in W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ then there exists a solution $(\mathbf{u}, p) \in W^{1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega)$ of (1.1), (1.2) if and only if

(5.2)
$$\int_{\partial\Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = \int_{\Omega} \chi \, \mathrm{d}x$$

The velocity \mathbf{u} is unique and the pressure p is unique up to an additive constant. If

(5.3)
$$\int_{\Omega} p \, \mathrm{d}x = 0$$

then

(5.4)
$$\|\mathbf{u}\|_{W^{1,q}(\Omega)} + \|p\|_{L^q(\Omega)} \le C \left(\|\mathbf{f}\|_{W^{-1,q}(\Omega)} + \|\chi\|_{L^q(\Omega)} + \|\mathbf{g}\|_{W^{1-1/q,q}(\partial\Omega)}\right)$$

where C does not depend on \mathbf{f} , χ and \mathbf{g} .

Proof. If there is a solution of (1.1), (1.2) then (5.2) holds by Lemma 5.1.

Suppose now that $(\mathbf{u}, p) \in W^{1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega)$ is a solution of (1.1), (1.2) with $\mathbf{f} \equiv 0, \ \chi \equiv 0$ and $\mathbf{g} \equiv 0$. Remember that $W^{1,q}(\Omega) = F_1^{q,2}(\Omega), \ L^q(\Omega) = F_0^{q,2}(\Omega)$ by [37, Theorem 1.122]. Here $F_s^{q,r}(\Omega)$ denote Triebel-Lizorkin spaces. Put s = 1 - 1/q. If m = 2 then s - 1/2 < 1/q < s + 1/2. If m = 3 then s/2 < 1/q < s/2 + 1/2. So, [26, Theorem 10.6.2] forces that $\mathbf{u} \equiv 0$ and p is constant.

Now we prove the existence of a solution under assumption that $\mathbf{f} \equiv 0$ and $\chi \equiv 0$. Let $G(0), G(1), \ldots, G(k)$ be components of $\mathbb{R}^m \setminus \overline{\Omega}$, where G(0) is unbounded. Choose $z^j \in G(j)$ for $j = 1, \ldots, k$. Put

$$w_j(x) = \frac{x - z^j}{|x - z^j|^m}.$$

Then $-\Delta w_j = 0$, $\nabla \cdot w^j = 0$ in $\mathbb{R}^m \setminus \{z^j\}$ by Lemma 5.2. For $\mu = (\mu_1, \dots, \mu_m) \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ put

$$V_{\Omega}\mu := E_{\Omega}^{0}\mu + \sum_{j=1}^{k} \langle \mu, w_j \rangle w_j \quad \text{for } m = 3,$$

$$V_{\Omega}\mu := E_{\Omega}^{0} \left[\mu - \frac{(\langle \mu_{1}, 1 \rangle, \langle \mu_{2}, 1 \rangle)}{\sigma(\partial \Omega)} \sigma \right] + (\langle \mu_{1}, 1 \rangle, \langle \mu_{2}, 1 \rangle) + \sum_{j=1}^{k} \langle \mu, w_{j} \rangle w_{j} \quad \text{for } m = 2,$$
$$\tilde{Q}_{\Omega}\mu = Q_{\Omega}\mu \qquad \text{for } m = 3,$$
$$\tilde{Q}_{\Omega}\mu = Q_{\Omega} \left[\mu - \frac{(\langle \mu_{1}, 1 \rangle, \langle \mu_{2}, 1 \rangle)}{\sigma(\partial \Omega)} \sigma \right] \qquad \text{for } m = 2.$$

Here σ denotes the surface measure on $\partial\Omega$. Then $V_{\Omega}\mu \in W^{1,q}(\Omega; \mathbb{R}^m) \cap \mathcal{C}^{\infty}(\Omega; \mathbb{R}^m)$, $\tilde{Q}_{\Omega}\mu \in L^q(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ by Lemma 4.1. Moreover, $-\Delta V_{\Omega}\mu + \nabla \tilde{Q}_{\Omega}\mu = 0$, $\nabla \cdot V_{\Omega}\mu = 0$ in Ω . Denote by $\mathcal{V}_{\Omega}\mu$ the trace of $V_{\Omega}\mu$ on $\partial\Omega$. Proposition 4.2 and Proposition 4.3 force that $\mathcal{V}_{\Omega}: W^{-1/q,q}(\partial\Omega; \mathbb{R}^m) \to W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ is a Fredholm operator with index 0.

We show that the dimension of the kernel of \mathcal{V}_{Ω} is at most 1. Suppose that $\mu \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ and $\mathcal{V}_{\Omega}\mu = 0$. Since $\nabla \cdot E_{\Omega}^0 \nu = 0$ for all $\nu \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$, $\nabla \cdot \mathbf{d} = 0$ for all $\mathbf{d} \in \mathbb{R}^2$ and $\nabla \cdot w_j = 0$ in G(i) for $j \neq i$, Lemma 5.1 gives

$$0 = \int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot \mathcal{V}_{\Omega} \mu \, \mathrm{d}\sigma = \int_{G(i)} \nabla \cdot (\mathcal{V}_{\Omega} \mu - \langle \mu, w_i \rangle w_i) \, \mathrm{d}x$$
$$+ \langle \mu, w_i \rangle \int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot w_i \, \mathrm{d}\sigma = \langle \mu, w_i \rangle \int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot w_i \, \mathrm{d}\sigma.$$

Since

$$\int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot w_i \, \mathrm{d}\sigma \neq 0$$

by Lemma 5.2, we infer that

(5.5)
$$\langle \mu, w_i \rangle = 0$$
 for $i = 1, \dots, k$.

We now show that there exist constants c_0, c_1, \ldots, c_k such that

(5.6)
$$\mu = c_j \mathbf{n}^{\Omega} \sigma \quad \text{on } \partial G(j).$$

If m = 3 then Proposition 4.3 gives that there exist constants c_0, c_1, \ldots, c_k such that (5.6) holds. Let now m = 2. Then $0 = \mathcal{V}_{\Omega}\mu = \mathcal{E}_{\Omega}^0\tilde{\mu} + (\langle \mu_1, 1 \rangle, \langle \mu_2, 1 \rangle)$, where

$$\tilde{\mu} = \mu - \frac{(\langle \mu_1, 1 \rangle, \langle \mu_2, 1 \rangle)}{\sigma(\partial \Omega)} \sigma.$$

Let \tilde{E}_{Ω} be given by (4.1). Since

$$\dot{E}_{\Omega}(\tilde{\mu}, (\langle \mu_1, 1 \rangle, \langle \mu_2, 1 \rangle) = [\mathcal{V}_{\Omega}\mu, 0] = [0, 0]$$

Proposition 4.2 gives that $(\langle \mu_1, 1 \rangle, \langle \mu_2, 1 \rangle) = (0, 0)$ and there are constants c_0, \ldots, c_k such that $\tilde{\mu} = c_j \mathbf{n}^{\Omega}$ on $\partial G(j)$. So, $\mu = \tilde{\mu} = c_j \mathbf{n}^{\Omega}$ on $\partial G(j)$ for $j = 0, \ldots, k$. Therefore (5.6) holds for m = 2, 3. If $i \ge 1$ then (5.5), (5.6) give

$$0 = \langle \mu, w_i \rangle = \sum_{j=0}^k \int_{\partial G(j)} c_j \mathbf{n}^{\Omega} \cdot w_i \, \mathrm{d}\sigma = -\sum_{j \neq 0, i} c_j \int_{G(j)} \nabla \cdot w_i \, \mathrm{d}x$$
$$+ c_i \int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot w_i \, \mathrm{d}\sigma + c_0 \int_{\partial G(0)} \mathbf{n}^{\Omega} \cdot w_i \, \mathrm{d}\sigma$$
$$= -c_i \int_{\partial G(i)} \sigma_m + c_0 \int_{\partial G(0)} \mathbf{n}^{\Omega} \cdot w_i \, \mathrm{d}\sigma$$

by Lemma 5.1 and Lemma 5.2. Therefore

$$c_i = c_0 \sigma_m^{-1} \int_{\partial G(0)} \mathbf{n}^{\Omega} \cdot w_i \, \mathrm{d}\sigma.$$

So, the dimension of the kernel of \mathcal{V}_{Ω} is at most 1.

Since $\mathcal{V}_{\Omega} : W^{-1/q,q}(\partial\Omega; \mathbb{R}^m) \to W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ is a Fredholm operator with index 0, the co-dimension of the range of \mathcal{V}_{Ω} is at most 1. Since $-\Delta V_{\Omega}\mu + \nabla \tilde{Q}_{\Omega}\mu = 0$, $\nabla \cdot V_{\Omega}\mu = 0$ in Ω , the condition (5.2) gives that

$$\mathcal{V}_{\Omega}(W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)) = \{ \mathbf{g} \in W^{1-1/q,q}(\partial\Omega;\mathbb{R}^m); \int_{\partial\Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = 0 \}.$$

So, if $\mathbf{g} \in W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ satisfies

$$\int_{\partial\Omega} \mathbf{g}\cdot\mathbf{n}^\Omega \ \mathrm{d}\sigma = 0,$$

then there exists $\mu \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ such that $(V_{\Omega}\mu, \tilde{Q}_{\Omega}\mu) \in W^{1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega)$ is a solution of (1.1), (1.2) with $\mathbf{f} \equiv 0, \chi \equiv 0$.

Let $\mathbf{f} \in W^{-1,q}(\Omega; \mathbb{R}^m)$, $\chi \in L^q(\Omega)$ and $\mathbf{g} \in W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ satisfy (5.2). Choose an open ball B in \mathbb{R}^m such that $\overline{\Omega} \subset B$. Put $\tilde{\chi} := \chi$ in Ω , $\tilde{\chi} := d$ in $\mathbb{R}^m \setminus \Omega$, where d is a constant such that

(5.7)
$$\int_{B} \tilde{\chi} \, \mathrm{d}x = 0.$$

Denote $X := \{ \mathbf{v} \in \mathring{W}^{1,q/(q-1)}(B; \mathbb{R}^m); \mathbf{v} = 0 \text{ in } B \setminus \Omega \}$. Then $\mathring{W}^{1,q/(q-1)}(\Omega; \mathbb{R}^m) = \{ \mathbf{v} |_{\Omega}; \mathbf{v} \in X \}$ by [2, Theorem 9.1.3] and thus **f** is a bounded linear operator on X. According to Hahn-Banach theorem ([33, Theorem 4.3-A]) there exists $\tilde{\mathbf{f}} \in \mathbf{v} \in \mathbb{R}^{d}$

 $W^{-1,q}(B;\mathbb{R}^m)$ such that $\langle \tilde{\mathbf{f}}, \mathbf{v} \rangle = \langle \mathbf{f}, \mathbf{v} \rangle$ for all $\mathbf{v} \in X$. Since (5.7) holds there exists a solution $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1,q}(B, \mathbb{R}^m) \times L^q(B)$ of

$$-\Delta \tilde{\mathbf{u}} + \nabla \tilde{p} = \tilde{\mathbf{f}}, \quad \nabla \cdot \tilde{\mathbf{v}} = \tilde{\chi} \quad \text{in } B,$$
$$\tilde{\mathbf{u}} = 0 \quad \text{on } \partial B.$$

(See [11, Theorem 2.1].) Then $-\Delta \tilde{\mathbf{u}} + \nabla \tilde{p} = \mathbf{f}, \nabla \cdot \tilde{\mathbf{u}} = \chi$ in Ω . Lemma 5.1 forces

$$\int_{\partial\Omega} \tilde{\mathbf{u}} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = \int_{\Omega} \nabla \cdot \tilde{\mathbf{u}} \, \mathrm{d}x = \int_{\Omega} \chi \, \mathrm{d}x.$$

Put $\tilde{\mathbf{g}} = \mathbf{g} - \tilde{\mathbf{u}}$ on $\partial\Omega$. Then $\tilde{\mathbf{g}} \in W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ by [19, Theorem 6.8.13]. According to (5.2) we have

$$\int_{\partial\Omega} \tilde{\mathbf{g}} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = \int_{\partial\Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma - \int_{\partial\Omega} \tilde{\mathbf{u}} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma = \int_{\Omega} \chi \, \mathrm{d}x - \int_{\Omega} \chi \, \mathrm{d}x = 0.$$

We have proved that there exists a solution $(\mathbf{v}, \rho) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ of

$$-\Delta \mathbf{v} + \nabla \rho = 0, \quad \nabla \cdot \mathbf{v} = 0 \qquad \text{in } \Omega,$$

 $\mathbf{v} = \tilde{\mathbf{g}}$ on $\partial \Omega$.

Put $\mathbf{u} := \tilde{\mathbf{u}} + \mathbf{v}, \ p := \tilde{p} + \rho$. Then $(\mathbf{u}, p) \in W^{1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega)$ is a solution of (1.1), (1.2).

Define

$$L(\mathbf{u}, p) := (-\Delta \mathbf{u} + \nabla p, \nabla \cdot \mathbf{p}, \mathbf{u}|_{\partial \Omega}).$$

Then L is a bounded linear operator from $W^{1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega)$ to $W^{-1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega) \times W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$. (See [19, Theorem 6.8.13], [37, Theorem 1.122], [25, Proposition 7.6].) Denote by Y the set of (\mathbf{u}, p) from $W^{1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega)$ satisfying (5.3). Further denote by Z the set of all $(\mathbf{f}, \chi, \mathbf{g})$ from $(W^{-1,q}(\Omega; \mathbb{R}^m) \times L^q(\Omega) \times W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m))$ satisfying (5.2). We have proved that $L: Y \to Z$ is an isomorphism. So, $L^{-1}: Z \to Y$ is an isomorphism, too. Thus there exists a constant C such that (5.4) holds.

Theorem 5.4. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 \leq s < \infty$, $1 < q < \infty$ and $0 \leq \lambda, \beta < \infty$. Suppose that one of the following conditions is fulfilled:

(1) s = 1 and q = 2.

(2) $\Omega \subset \mathbb{R}^2$, s = 1 and 4/3 < q < 4.

(3) $\Omega \subset \mathbb{R}^3$, s = 1 and 3/2 < q < 3.

- (4) $\partial \Omega$ is of class C^1 and s = 1.
- (5) $\partial \Omega$ is of class $\mathcal{C}^{k,1}$ with $k \in N$ and $s \leq k+1$.

If $\mathbf{f} \in W^{s-2,q}(\Omega; \mathbb{R}^m)$, $\chi \in W^{s-1,q}(\Omega)$ and $\mathbf{g} \in W^{s-1/q,q}(\partial\Omega; \mathbb{R}^m)$ then there exists a solution $(\mathbf{u}, p) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ of (1.1), (1.4) if and only if (5.2) holds. The velocity \mathbf{u} is unique and the pressure p is unique up to an additive constant. If p satisfies (5.3) then

$$\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|p\|_{W^{s-1,q}(\Omega)} \le C \left(\|\mathbf{f}\|_{W^{s-2,q}(\Omega)} + \|\chi\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g}\|_{W^{s-1/q,q}(\partial\Omega)} \right)$$

where C does not depend on \mathbf{f} , χ and \mathbf{g} .

Proof. Lemma 5.1 forces that (5.2) is a necessary condition for the solvability of the problem (1.1), (1.4).

Suppose first that $\beta = 0$. Put $X_{s,q} := W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega), Y_{s,q} := W^{s-2,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega) \times W^{s-1/q,q}(\partial\Omega; \mathbb{R}^m)$. For $\mu \in \mathbb{R}^1$ define

$$B_{\mu}(\mathbf{u}, p) := (-\Delta \mathbf{u} + \mu \mathbf{u} + \nabla p, \nabla \cdot \mathbf{u}, \gamma_{\Omega} \mathbf{u}),$$

where γ_{Ω} is the trace operator. Then B_{μ} is a bounded linear operator from $X_{s,q}$ to $Y_{s,q}$ by [13, Theorem 1.4.4.6] and [13, Theorem 1.5.1.2]. Since $B_{\lambda}(\mathbf{u}, p) - B_0(\mathbf{u}, p) = (\lambda \mathbf{u}, 0, 0)$, the operator $B_{\lambda} - B_0 : X_{s,q} \to Y_{s,q}$ is compact by Proposition 2.1. So, $B_{\lambda} : X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0 if and only if $B_0 : X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0.

Denote by Ker B_{λ} the kernel of B_{λ} . If dim Ker $B_{\lambda} \leq 1$ then Ker $B_{\lambda} = \{(\mathbf{u}, p); \mathbf{u} \equiv 0, p \text{ is constant }\}$. Suppose now that $B_{\lambda} : X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0 and dim Ker $B_{\lambda} \leq 1$. Then the co-dimension of the range of B_{λ} is equal to 1. So, (5.2) is a necessary and sufficient condition for the solvability of the problem (1.1), (1.2). Denote by Z the space of all $p \in W^{s-1,q}(\Omega)$ satisfying (5.3), by W the space of $\mathbf{g} \in W^{s-1/q,q}(\partial\Omega; \mathbb{R}^m)$ satisfying (5.2), $X := W^{s,q}(\Omega; \mathbb{R}^m) \times Z$ and $Y := W^{s-2,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega) \times W$. Then B_{λ} is an isomorphism X onto Y. So, propositions of the theorem hold.

Let s = 1 and q = 2. If $(\mathbf{u}, p) \in W^{1,2}(\Omega; \mathbb{R}^m) \times L^2(\Omega)$ is a solution of (1.1), (1.2) with $\mathbf{f} \equiv 0, \chi \equiv 0$ and $\mathbf{g} \equiv 0$, then $\mathbf{u} \equiv 0$ and p is constant by [6, Theorem IV.8.1]. Moreover $B_0: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0 by [6, Theorem IV.5.2]. Thus $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0 and (5.2) is a necessary and sufficient condition for the solvability of the problem (1.1), (1.2).

If $\partial\Omega$ is of class \mathcal{C}^1 and s = 1 then $B_0: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0 by [11, Theorem 2.1]. So, $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0. If $q \geq 2$ then $X_{s,q} \hookrightarrow X_{1,2}, Y_{s,q} \hookrightarrow Y_{1,2}$ by Hölder's inequality and $X_{s,q}$ is a dense subset of $X_{1,2}, Y_{s,q}$ is a dense subset of $Y_{1,2}$ by [1, Theorem 3.22]. If $q \leq 2$ then $X_{1,2} \hookrightarrow X_{s,q}, Y_{1,2} \hookrightarrow Y_{s,q}$ by Hölder's inequality and $X_{1,2}$ is a dense subset of $X_{s,q}, Y_{1,2}$ is a dense subset of $Y_{s,q}$ by [1, Theorem 3.22]. So, [23, Lemma 1.8.4] gives that the kernel of $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is the same as the kernel of $B_{\lambda}: X_{1,2} \to Y_{1,2}$. Hence the dimension of the kernel of $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is equal to 1. We have proved that the proposition of the Theorem is true.

Suppose now that s = 1 and $2 \le m \le 3$. If m = 2 suppose that 4/3 < q < 4. If m = 3 suppose that 3/2 < q < 3. Then $B_0 : X_{1,q} \to Y_{1,q}$ is a Fredholm operator with index 0 by Proposition 5.3. So, $B_{\lambda} : X_{1,q} \to Y_{1,q}$ is a Fredholm operator with index 0. If $q \ge 2$ then $X_{1,q} \hookrightarrow X_{1,2}$, $Y_{1,q} \hookrightarrow Y_{1,2}$ by Hölder's inequality and $X_{1,q}$ is a dense subset of $X_{1,2}$, $Y_{1,q} \hookrightarrow Y_{1,2}$ by Elder's inequality and $X_{1,q}$ is a dense subset of $X_{1,2}$, $Y_{1,q} \hookrightarrow Y_{1,q}$ by Elder's inequality and $X_{1,q}$ is a dense subset of $X_{1,2}$, $Y_{1,q} \hookrightarrow Y_{1,q}$ by Hölder's inequality and $X_{1,2}$ is a dense subset of $X_{1,q}$, $Y_{1,2} \hookrightarrow X_{s,q}$, $Y_{1,2} \hookrightarrow Y_{1,q}$ by Hölder's inequality and $X_{1,2}$ is a dense subset of $X_{1,q}$, $Y_{1,2}$ is a dense subset of $Y_{1,q}$ by Elder's inequality and $X_{1,2}$ is a dense subset of $Y_{1,q}$ by [1, Theorem 3.22]. So, [23, Lemma 1.8.4] gives that the kernel of $B_{\lambda} : X_{1,q} \to Y_{1,q}$ is the same as the kernel of $B_{\lambda} : X_{1,2} \to Y_{1,2}$. Hence the dimension of the kernel of $B_{\lambda} : X_{1,q} \to Y_{1,q}$ is equal to 1. We have proved that the proposition of the Theorem is true.

Suppose now that $\partial\Omega$ is of class $\mathcal{C}^{k,1}$ with $k \in N$ and s = k+1. Then $B_0: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0 by [5, Theorem 4.8]. So, $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0. Since the kernel of $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is a subset of the kernel of $B_{\lambda}: X_{1,q} \to Y_{1,q}$, the dimension of the kernel of $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is at most 1. We have proved that the proposition of the Theorem is true.

Suppose now that $\partial \Omega$ is of class $\mathcal{C}^{k,1}$ with $k \in N$ and k < s < k + 1. Define

$$\tilde{B}_{\mu}(\mathbf{u},p) := (-\Delta \mathbf{u} + \mu \mathbf{u} + \nabla p, \nabla \cdot \mathbf{u} + \int_{\Omega} p \, \mathrm{d}x, \gamma_{\Omega} \mathbf{u}).$$

Since $B_{\lambda} : X_{k,q} \to Y_{k,q}$ and $B_{\lambda} : X_{k+1,q} \to Y_{k+1,q}$ are Fredholm operators with index 0, and the operator $\tilde{B}_{\lambda} - B_{\lambda}$ is finite-dimensional, $\tilde{B}_{\lambda} : X_{k,q} \to Y_{k,q}$ and $\tilde{B}_{\lambda} : X_{k+1,q} \to Y_{k+1,q}$ are Fredholm operators with index 0. Suppose now that $(\mathbf{u}, p) \in X_{k,q}$ and $\tilde{B}_{\lambda}(\mathbf{u}, p) = 0$. According to Green's formula

$$0 = \int_{\Omega} \left(\nabla \cdot \mathbf{u} + \int_{\Omega} p \, \mathrm{d}x \right) \, \mathrm{d}x = \int_{\partial \Omega} \mathbf{u} \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma + \int_{\Omega} p \, \mathrm{d}x \cdot \int_{\Omega} 1 \, \mathrm{d}x = \int_{\Omega} p \, \mathrm{d}x \cdot \int_{\Omega} 1 \, \mathrm{d}x.$$

Since $\int_{\Omega} p \, dx = 0$ we have $B_{\lambda}(\mathbf{u}, p) = 0$. We have proved that $(\mathbf{u}, p) = 0$. Hence $\tilde{B}_{\lambda} : X_{k,q} \to Y_{k,q}$ and $\tilde{B}_{\lambda} : X_{k+1,q} \to Y_{k+1,q}$ are isomorphisms. We now use the real interpolation. Choose $\theta \in (0, 1)$ such that $s = (1 - \theta)k + \theta k$. Then

$$(X_{k,q}, X_{k+1,q})_{\theta,q} = X_{s,q}, \quad (Y_{k,q}, Y_{k+1,q})_{\theta,q} = Y_{s,q}$$

by [7, Corollary 6.8] and [32, Lemma 41.3]. So, [3, Theorem 13.7.1] forces that B_{λ} : $X_{s,q} \to Y_{s,q}$ is an isomorphism, too. (We can also use the complex interpolation and [16, Proposition 2.4], [35, §1.11.3], [3, Theorem 13.7.1].) Therefore $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0. Since the kernel of $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is a subset of the kernel $B_{\lambda}: X_{k,q} \to Y_{k,q}$, the dimension of the kernel of $B_{\lambda}: X_{s,q} \to Y_{s,q}$ is equal to 1. We have proved that propositions of the Theorem hold.

Suppose now that $\beta > 0$. Define

$$C_{\lambda}(\mathbf{u}, p) := (-\Delta \mathbf{u} + \lambda \mathbf{u} + \nabla p, \nabla \cdot \mathbf{u}, \gamma_{\Omega} \mathbf{u} + \beta \int_{\Omega} \mathbf{u} \, \mathrm{d}x).$$

Since the operator $C_{\lambda} - B_{\lambda}$ is finite-dimensional, the operator $C_{\lambda} : X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0. Let now $(\mathbf{u}, p) \in X_{s,q}$ be such that $C_{\lambda}(\mathbf{u}, p) = 0$. Then

$$-\Delta \mathbf{u} + \lambda \mathbf{u} + \nabla p = 0, \quad \nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega$$
$$\mathbf{u} = -\beta \int_{\Omega} \mathbf{u} \, \mathrm{d}x \quad \text{on } \partial\Omega.$$

Thus there is a constant c such that $\mathbf{u} \equiv -\beta \int_{\Omega} \mathbf{u} \, dx$, $p \equiv c$. Therefore

$$0 = \int_{\Omega} (\mathbf{u} + \beta \int_{\Omega} \mathbf{u} \, \mathrm{d}x) \, \mathrm{d}x = \int_{\Omega} \mathbf{u} \, \mathrm{d}x (1 + \beta \int_{\Omega} 1 \, \mathrm{d}x).$$

Since $\beta > 0$ we infer that $\int_{\Omega} \mathbf{u} \, dx = 0$. Hence $B_{\lambda}(\mathbf{u}, p) = 0$. We have proved that $\mathbf{u} \equiv 0$. Since the dimension of the kernel of $C_{\lambda} : X_{s,q} \to Y_{s,q}$ is equal to 1 and the the operator $C_{\lambda} : X_{s,q} \to Y_{s,q}$ is a Fredholm operator with index 0, the co-dimension of the range of $C_{\lambda} : X_{s,q} \to Y_{s,q}$ is equal to 1. Therefore (5.2) is a necessary and sufficient condition for the solvability of the problem (1.1), (1.4). So, C_{λ} is an isomorphism X onto Y.

6. DARCY-FORCHHEIMER-BRINKMAN SYSTEM

Lemma 6.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $k \in \mathbb{N}$ and $1 < q < \infty$. Then there is a constant C such that the following holds: If $\mathbf{w} \in W^{1,q}(\Omega; \mathbb{R}^k)$ then $|\mathbf{w}| \in W^{1,q}(\Omega)$ and

$$\| |\mathbf{w}| \|_{W^{1,q}(\Omega)} \le C \|\mathbf{w}\|_{W^{1,q}(\Omega)}.$$

Proof. Fix $\mathbf{w} \in W^{1,q}(\Omega; \mathbb{R}^k)$. Put $g_i := |w_i|$. Then $g_i \in W^{1,q}(\Omega)$ and $||g_i||_{W^{1,q}(\Omega)} = ||w_i||_{W^{1,q}(\Omega)}$ by [20, Theorem 6.17]. For $\epsilon \ge 0$ put $g^{\epsilon} := |(g_1 + \epsilon, \ldots, g_k + \epsilon)|$. Remark that $g^0 = |\mathbf{w}|$,

$$\|g^0\|_{L^q(\Omega)} \le k \|\mathbf{w}\|_{L^q(\Omega)}$$

and $g^{\epsilon} \to g^0$ in $L^q(\Omega)$ as $\epsilon \to 0_+$. If $\epsilon > 0$ then

$$\partial_j g^{\epsilon}(x) = \frac{1}{2g^{\epsilon}(x)} \sum_{i=1}^m (g_i(x) + \epsilon) \partial_j g_i(x).$$

So,

$$|\partial_j g^{\epsilon}| \leq |\partial_j g_1, \dots, \partial_j g_k|| \leq |(\partial_j g_1| + \dots + |\partial_j g_k|).$$

Therefore

$$\|\partial_j g^{\epsilon}\|_{L^q(\Omega)} \le \sum_{i=1}^{\kappa} \|\partial_j g_i\|_{L^q(\Omega)}.$$

If $g^0(x) > 0$ then $\partial_j g^{\epsilon}(x) \to \frac{1}{2} |g^0(x)|^{-1} \sum_{i=1}^m g_i(x) \partial_j g_i(x)$ as $\epsilon \to 0_+$. If $g^0(x) = 0$ then $\partial_j g_i(x) = 0$ by [20, Theorem 6.17] and thus $\partial_j g^{\epsilon}(x) = 0$. Put

$$f(x) := \frac{1}{2g^0(x)} \sum_{i=1}^m g_i(x) \partial_j g_i(x) \quad \text{for } g^0(x) > 0,$$
$$f(x) := 0 \quad \text{for } g^0(x) = 0.$$

Then $\partial_j g^{\epsilon} \to f$ in $L^q(\Omega)$ as $\epsilon \to 0_+$ by Lebesgue's theorem. (See [4, Theorem 3.12].) So, $g^{1/n}$ is a Cauchy sequence in $W^{1,q}(\Omega)$. Therefore there exists $h \in W^{1,q}(\Omega)$ such that $g^{1/n} \to h$ in $W^{1,q}(\Omega)$. Since $g^{1/n} \to |\mathbf{w}|$ in $L^q(\Omega)$, we infer that $h = |\mathbf{w}|$. Since

$$\|g^{1/n}\|_{W^{1,q}(\Omega)} \le k^2 \|\mathbf{w}\|_{W^{1,q}(\Omega)}$$

we infer that

$$\| \| \mathbf{w} \|_{W^{1,q}(\Omega)} \le k^2 \| \mathbf{w} \|_{W^{1,q}(\Omega)}$$

Remark 6.2. Clearly $|| |\mathbf{w}| - |\mathbf{v}| ||_{L^r(\Omega)} \leq ||\mathbf{w} - \mathbf{v}||_{L^r(\Omega)}$. But in general, it does not exist a constant C such that

$$\parallel |\mathbf{w}| - |\mathbf{v}| \parallel_{W^{1,q}(\Omega)} \leq \|\mathbf{w} - \mathbf{v}\|_{W^{1,q}(\Omega)}.$$

This shows the following easy example: Let I = (0, 1). Fix $q \in (1, \infty)$. Put $f_{\alpha}(t) := t^{\alpha}, g_{\alpha}(t) := t^{\alpha} - 1$. Then $f'_{\alpha}(t) = g'_{\alpha}(t) = \alpha t^{\alpha-1}$. So, $f_{\alpha}, g_{\alpha} \in W^{1,q}(I)$ if and only if $\alpha > (q-1)/q$. Since $f_{\alpha} - g_{\alpha} \equiv 1$, we have $||f_{\alpha} - g_{\alpha}||_{W^{1,q}(I)} = 1$. Since $|f_{\alpha}| - |g_{\alpha}| = 2t^{\alpha} - 1$, we have $\partial_t(|f_{\alpha}(t)| - |g_{\alpha}(t)|) = 2\alpha t^{\alpha-1}$. So,

$$\int_0^1 |\partial_t (|f_\alpha(t)| - |g_\alpha(t)|)|^q \, \mathrm{d}t = (2\alpha)^q \int_0^1 t^{q\alpha-q} \, \mathrm{d}t = \frac{(2\alpha)^q}{\alpha q - q + 1}.$$

If $\alpha \searrow (q-1)/q$ then $\| |f_\alpha| - |g_\alpha| \|_{W^{1,q}(I)}^q \ge \frac{(2\alpha)^q}{\alpha q - q + 1} \to \infty.$

Lemma 6.3. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 \leq s < 3$ and $\max(1, m/3) < q < \infty$. For $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$ define

$$A(\mathbf{u},\mathbf{v}) := |\mathbf{u}|\mathbf{v}.$$

(1) Then there is a positive constant C such that the following holds: If $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$ then $A(\mathbf{u}, \mathbf{v}) \in W^{s-2,q}(\Omega; \mathbb{R}^m)$ and

$$\|A(\mathbf{u},\mathbf{v})\|_{W^{s-2,q}(\Omega)} \leq C \|\mathbf{u}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)}.$$

(2) Suppose that $s \leq 2$. If s < 2 and sq < m = 3 suppose moreover that $q \geq 6/(3+2s)$. If s < 2 and m/(m-2+s) < q < m/s suppose moreover that $q \geq m/(2+s)$. Then

(6.1) $||A(\mathbf{u},\mathbf{u}) - A(\mathbf{v},\mathbf{v})||_{W^{s-2,q}(\Omega)} \le C ||\mathbf{u} - \mathbf{v}||_{W^{s,q}(\Omega)} \left(||\mathbf{u}||_{W^{s,q}(\Omega)} + ||\mathbf{v}||_{W^{s,q}(\Omega)} \right).$

Proof. According to Lemma 6.1 there exists a constant C_1 such that

$$\| \| \mathbf{w} \| \|_{W^{1,q}(\Omega)} \le C_1 \| \mathbf{w} \|_{W^{s,q}(\Omega)}$$

for all $\mathbf{w} \in W^{s,q}(\Omega; \mathbb{R}^m)$. Since $\min(s, 1) > s - 2$ and s + 1 - (s - 2) = 3 > m/q, Lemma 7.1 forces that there is a constant C_2 such that

$$||fg||_{W^{s-2,q}(\Omega)} \le C_2 ||f||_{W^{1,q}(\Omega)} ||g||_{W^{s,q}(\Omega)}$$

for all $f \in W^{1,q}(\Omega)$ and $g \in W^{s,q}(\Omega)$. If $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$ then

 $\|A(\mathbf{u},\mathbf{v})\|_{W^{s-2,q}(\Omega)} \le C_2 m \| \|\mathbf{u}\|_{W^{1,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)} \le C_1 C_2 m \|\mathbf{u}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)}.$

As Remark 6.2 shows, the proof of the second part of Lemma will be a bit complicated. Since $A(\mathbf{u}, \mathbf{u}) - A(\mathbf{v}, \mathbf{v}) = A(\mathbf{u}, \mathbf{u} - \mathbf{v}) + (|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}$, we have

(6.2)
$$\|A(\mathbf{u},\mathbf{u}) - A(\mathbf{v},\mathbf{v})\|_{W^{s-2,q}(\Omega)}$$

$$\leq C_1 C_2 m \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|(|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}\|_{W^{s-2,q}(\Omega)}$$

Suppose that $s \leq 2$. Suppose first that $sq \geq m$. According to Lemma 2.2 there is a positive constant C_3 such that

$$||f||_{L^{2q}(\Omega)} \le C_3 ||f||_{W^{s,q}(\Omega)} \qquad \forall f \in W^{s,q}(\Omega).$$

If $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$ then

$$\begin{aligned} \|(|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}\|_{L^{q}(\Omega)} &\leq \||\mathbf{u} - \mathbf{v}|\mathbf{v}\|_{L^{q}(\Omega)} \leq \||\mathbf{u} - \mathbf{v}||\|_{L^{2q}(\Omega)} \|\mathbf{v}\|_{L^{2q}(\Omega)} \\ &\leq C_{3}^{2}m^{2}\|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)} \end{aligned}$$

by Hölder's inequality. So,

$$\|(|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}\|_{W^{s-2,q}(\Omega)} \le C_3^2 m^2 \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)}.$$

This and (6.2) force that (6.1) holds with $C \ge C_1 C_2 m + C_3^2 m^2$.

Suppose now that $s \leq 2$ and sq < m. Put r = mq/(m - sq). Then there is a constant C_4 such that

(6.3)
$$||f||_{L^r(\Omega)} \le C_4 ||f||_{W^{s,q}(\Omega)} \quad \text{for } f \in W^{s,q}(\Omega)$$

by Lemma 2.2. We show that $r/2 \ge 1$. Since q > m/3 we have for $m \ge 4$ that $r/2 > m(m/3)/[2(m-m/3)] = m/4 \ge 1$. If m = 2 then $r/2 = q/(2-sq) \ge q/(2-1) = q > 1$. Suppose now that m = 3. Since $q \ge 6/(3+2s)$ we obtain

$$\frac{r}{2} = \frac{3q}{2(3-sq)} \ge \frac{18/(3+2s)}{6-12s/(3+2s)} = \frac{3}{(3+2s)-2s} = 1.$$

Hölder's inequality forces

$$\|(|\mathbf{u}|-|\mathbf{v}|)\mathbf{v}\|_{L^{r/2}(\Omega)} \leq \|\mathbf{u}-\mathbf{v}\|_{L^{r}(\Omega)}\|\mathbf{v}\|_{L^{r}(\Omega)}.$$

Using (6.3)

(6.4)
$$\|(|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}\|_{L^{r/2}(\Omega)} \le C_4^2 m^2 \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)}.$$

Suppose first that s = 2. Since m/3 < q we have $r/2 = qm/(2m - 4q) > qm/(2m - 4m/3) = q \cdot 3/2 > q$. So, there is a constant C_5 such that

(6.5)
$$||f||_{L^q(\Omega)} \le C_5 ||f||_{L^{r/2}(\Omega)} \quad \forall f \in L^{r/2}(\Omega).$$

According to (6.4) we obtain

$$\begin{aligned} \| (|\mathbf{u}| - |\mathbf{v}|)\mathbf{v} \|_{W^{s-2,q}(\Omega)} &= \| (|\mathbf{u}| - |\mathbf{v}|)\mathbf{v} \|_{L^{q}(\Omega)} \le C_{5} \| (|\mathbf{u}| - |\mathbf{v}|)\mathbf{v} \|_{L^{r/2}(\Omega)} \\ &\le C_{5} C_{4}^{2} m^{2} \| \mathbf{u} - \mathbf{v} \|_{W^{s,q}(\Omega)} \| \mathbf{v} \|_{W^{s,q}(\Omega)}. \end{aligned}$$

Therefore (6.2) gives that (6.1) holds with $C \ge C_1 C_2 m + C_5 C_4 m^2$.

Let now s < 2 and sq < m. If m = 2 then $r/2 \ge q$ as we have proved. So, there is a constant C_5 such that (6.5) holds. Therefore there is a constant C_6 such that

(6.6)
$$||f||_{W^{s-2,q}(\Omega)} \le C_6 ||f||_{L^{r/2}(\Omega)} \quad \forall f \in L^{r/2}(\Omega).$$

Suppose now that $m \ge 3$. Put q' = q/(q-1) and t = (r/2)/(r/2-1). Suppose first that $(2-s)q' \ge m$. According to Lemma 2.2 there is a constant C_7 such that

$$||g||_{L^{t}(\Omega)} \leq C_{7} ||g||_{W^{2-s,q'}(\Omega)} \qquad \forall g \in W^{2-s,q'}(\Omega).$$

If $f \in L^{r/2}(\Omega)$ and $g \in W^{2-s,q'}(\Omega)$ then Hölder's inequality yields

$$\left| \int_{\Omega} fg \, \mathrm{d}x \right| \le \|f\|_{L^{r/2}(\Omega)} \|g\|_{L^{t}(\Omega)} \le \|f\|_{L^{r/2}(\Omega)} C_{7} \|g\|_{W^{2-s,q'}(\Omega)}.$$

Thus $f \in W^{s-2,q}(\Omega)$ and (6.6) holds with $C_6 \geq C_7$. Suppose now that (2-s)q' < m. Put $\tau = mq'/[m - (2-s)q']$. According to Lemma 2.2 there is a constant C_8 such that

(6.7)
$$||g||_{L^{\tau}(\Omega)} \le C_8 ||g||_{W^{2-s,q'}(\Omega)} \quad \forall g \in W^{2-s,q'}(\Omega).$$

Clearly,

$$t = \frac{r/2}{r/2 - 1} = \frac{(mq)/(2m - 2sq)}{(mq)/(2m - 2sq) - 1} = \frac{mq}{mq - 2m + 2sq},$$

$$\tau = \frac{mq'}{m - (2 - s)q'} = \frac{mq/(q - 1)}{m - (2 - s)q/(q - 1)} = \frac{mq}{mq - m - (2 - s)q}$$

Thus $\tau \ge t$ if and only if $m + (2-s)q \ge 2m - 2sq$, i.e. if $(2+s)q \ge m$. Since q' < m/(2-s) we have

$$q = \frac{q'}{q'-1} > \frac{m/(2-s)}{m/(2-s)-1} = \frac{m}{m-2+s}.$$

So, $q \ge m/(2+s)$ by assumptions. Therefore $\tau \ge t$. Thus there is a constant C_9 such that

$$\|g\|_{L^t(\Omega)} \le C_9 \|g\|_{L^\tau(\Omega)} \qquad \forall g \in L^\tau(\Omega)$$

If $f \in L^{r/2}(\Omega)$ and $g \in W^{2-s,q'}(\Omega)$ then Hölder's inequality and (6.7) yield

$$\left| \int_{\Omega} fg \, \mathrm{d}x \right| \leq \|f\|_{L^{r/2}(\Omega)} \|g\|_{L^{t}(\Omega)} \leq C_{9} \|f\|_{L^{r/2}(\Omega)} \|g\|_{L^{\tau}(\Omega)}$$
$$\leq C_{8} C_{9} \|f\|_{L^{r/2}(\Omega)} \|g\|_{W^{2-s,q'}(\Omega)}.$$

Thus $f \in W^{s-2,q}(\Omega)$ and (6.6) holds with $C_6 \ge C_8 C_9$. We have proved (6.6) for s < 2. Using (6.2), (6.6) and (6.4)

$$\begin{aligned} \|A(\mathbf{u},\mathbf{u}) - A(\mathbf{v},\mathbf{v})\|_{W^{s-2,q}(\Omega)} &\leq C_1 C_2 m \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{u}\|_{W^{s,q}(\Omega)} \\ &+ \|(|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}\|_{W^{s-2,q}(\Omega)} \leq C_1 C_2 m \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{u}\|_{W^{s,q}(\Omega)} \\ &+ C_6 \|(|\mathbf{u}| - |\mathbf{v}|)\mathbf{v}\|_{L^{r/2}(\Omega)} \leq C_1 C_2 m \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{u}\|_{W^{s,q}(\Omega)} \\ &+ C_6 C_4^2 m^2 \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)} \\ &\leq (C_1 C_2 m + + C_6 C_4^2 m^2) \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \left(\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|\mathbf{v}\|_{W^{s,q}(\Omega)} \right). \end{aligned}$$

Lemma 6.4. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 \leq s < \infty$ and $1 < q < \infty$. For $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$ define

$$B(\mathbf{u},\mathbf{v}):=(\mathbf{u}\cdot\nabla)\mathbf{v}.$$

Suppose that one of the following conditions is satisfied:

(1) 1 < s and q > m/(s+1).

(2) s = 1, q > 2m/(m+1). If m/(m-1) < q < m suppose that $q \ge m/2$.

Then there exists a positive constant C such that the following holds: If $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$ then $B(\mathbf{u}, \mathbf{v}) \in W^{s-2,q}(\Omega; \mathbb{R}^m)$ and

(6.8)
$$\|B(\mathbf{u},\mathbf{v})\|_{W^{s-2,q}(\Omega)} \le C \|\mathbf{u}\|_{W^{s,q}(\Omega)} \|\mathbf{v}\|_{W^{s,q}(\Omega)},$$

$$\|B(\mathbf{u},\mathbf{u}) - B(\mathbf{v},\mathbf{v})\|_{W^{s-2,q}(\Omega)} \le C \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} \left(\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|\mathbf{v}\|_{W^{s,q}(\Omega)}\right).$$

Proof. Suppose first that s > 1 and q > m/(s+1). Clearly, $\min(s, s-1) > s-2$. Moreover, s + (s-1) - (s-2) = s + 1 > m/q. According to Proposition 7.1 there is a constant C such that (6.8) holds.

Suppose now that s = 1. Put q' = q/(q-1). Suppose first that $q \ge m$. According to Lemma 2.2 there exist $r \in (q', \infty)$ and a constant C_1 such that

(6.9)
$$||g||_{L^{r}(\Omega)} \leq C_{1} ||g||_{W^{1,q'}(\Omega)} \quad \forall g \in W^{1,q'}(\Omega).$$

Since 1/q + 1/q' = 1 we have 1/q + 1/r < 1. Thus there exists $t \in (1, \infty)$ such that 1/q + 1/r + 1/t = 1. According to Lemma 2.2 there is a constant C_2 such that

(6.10)
$$||f||_{L^t(\Omega)} \le C_2 ||f||_{W^{1,q}(\Omega)} \quad \forall f \in W^{1,q}(\Omega).$$

If $h \in L^q(\Omega)$, $g \in W^{1,q'}(\Omega)$ and $f \in W^{1,q}(\Omega)$ then Hölder's inequality forces

$$\left| \int_{\Omega} fhg \, \mathrm{d}x \right| \le \|f\|_{L^{t}(\Omega)} \|h\|_{L^{q}(\Omega)} \|g\|_{L^{r}(\Omega)} \le C_{1}C_{2} \|f\|_{W^{1,q}(\Omega)} \|h\|_{L^{q}(\Omega)} \|g\|_{W^{1,q'}(\Omega)}.$$

So, $fh \in W^{-1,q}(\Omega)$ and

(6.11)
$$\|fh\|_{W^{-1,q}(\Omega)} \le C_1 C_2 \|f\|_{W^{1,q}(\Omega)} \|h\|_{L^q(\Omega)}.$$

If $\mathbf{u}, \mathbf{v} \in W^{1,q}(\Omega; \mathbb{R}^m)$ then $B(\mathbf{u}, \mathbf{v}) \in W^{-1,q}(\Omega; \mathbb{R}^m)$ and (6.8) holds with $C \geq C_1 C_2 m^2$.

Suppose now that s = 1 and q < m. Put t := mq/(m-q). According to Lemma 2.2 there exists a constant C_2 such that (6.10) hods. Since q > 2m/(m+1) we have

$$\frac{1}{q} + \frac{1}{t} = \frac{1}{q} + \frac{m-q}{mq} < \frac{m+1}{2m} + \frac{m-2m/(m+1)}{2m^2/(m+1)} = \frac{m+1}{2m} + \frac{m+1-2}{2m} = 1.$$

Therefore there is $r \in (1, \infty)$ such that 1/q + 1/t + 1/r = 1. Hölder's inequality forces

(6.12)
$$\left| \int_{\Omega} fhg \, \mathrm{d}x \right| \le \|f\|_{L^{t}(\Omega)} \|h\|_{L^{q}(\Omega)} \|g\|_{L^{r}(\Omega)}.$$

Suppose first that $q' = q/(q-1) \ge m$. According to Lemma 2.2 there exists a constant C_1 such that (6.9) holds. Suppose now that q' < m. Then q = q'/(q'-1) > m/(m-1). So, $q \ge m/2$ by assumption. Thus

$$\frac{1}{r} - \frac{m-q'}{mq'} = 1 - \frac{1}{q} - \frac{1}{t} - \frac{m-q/(q-1)}{mq/(q-1)} = 1 - \frac{1}{q} - \frac{m-q}{mq} - \frac{mq-m-q}{mq}$$

$$=\frac{mq-m-m+q-mq+m+q}{mq}=\frac{2q-m}{mq}\geq 0.$$

Hence $r \leq mq'/(m-q')$. According to Lemma 2.2 there exists a constant C_1 such that (6.9) holds. According to (6.12), (6.9) and (6.10)

 $\left| \int_{\Omega} fgh \, \mathrm{d}x \right| \le \|f\|_{L^{t}(\Omega)} \|h\|_{L^{q}(\Omega)} \|g\|_{L^{r}(\Omega)} \le C_{1}C_{2} \|f\|_{W^{1,q}(\Omega)} \|h\|_{L^{q}(\Omega)} \|g\|_{W^{1,q'}(\Omega)}.$ So, if $f \in W^{1,q}(\Omega)$ and $h \in L^q(\Omega)$, then $fh \in W^{-1,q}(\Omega)$ and (6.11) holds. If $\mathbf{u}, \mathbf{v} \in W^{1,q}(\Omega)$ $W^{1,q}(\Omega;\mathbb{R}^m)$ then $B(\mathbf{u},\mathbf{v}) \in W^{-1,q}(\Omega;\mathbb{R}^m)$ and (6.8) holds with $C \geq C_1 C_2 m^2$. Clearly

$$\begin{aligned} \|B(\mathbf{u},\mathbf{u}) - B(\mathbf{v},\mathbf{v})\|_{W^{s-2,q}(\Omega)} &= \|B(\mathbf{u} - \mathbf{v},\mathbf{u}) + B(\mathbf{v},\mathbf{u} - \mathbf{v})\|_{W^{s-2,q}(\Omega)} \leq \\ \|B(\mathbf{u} - \mathbf{v},\mathbf{u})\|_{W^{s-2,q}(\Omega)} + \|B(\mathbf{v},\mathbf{u} - \mathbf{v})\|_{W^{s-2,q}(\Omega)} \leq \\ C\|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)}\|\mathbf{u}\|_{W^{s,q}(\Omega)} + C\|\mathbf{v}\|_{W^{s,q}(\Omega)}\|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)}. \end{aligned}$$

Theorem 6.5. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 \leq 1$ $s < \infty$ and $1 < q < \infty$. Suppose that one of the following conditions is satisfied:

- (1) $m \le 4, s = 1$ and q = 2.
- (2) $\Omega \subset \mathbb{R}^2$, s = 1 and 4/3 < q < 4. (3) $\Omega \subset \mathbb{R}^3$, s = 1 and 3/2 < q < 3.
- (4) $\partial\Omega$ is of class \mathcal{C}^1 , s = 1 and q > 2m/(m+1). If m/(m-1) < q < m then $q \ge m/2.$
- (5) $\partial \Omega$ is of class $\mathcal{C}^{k,1}$ with $k \in N$, 1 < s < k+1 and q > m/(s+1).

Let $0 \leq \lambda, a, b, \beta < \infty$. If s > 2 or $q \leq m/3$ suppose that a = 0. If m = 3, s = 1and q < 6/5 suppose that a = 0. Then there exist $\delta, \epsilon, C \in (0, \infty)$ such that the following holds: If $\mathbf{f} \in W^{s-2,q}(\Omega; \mathbb{R}^m)$, $\chi \in W^{s-1,q}(\Omega)$ and $\mathbf{g} \in W^{s-1/q,q}(\partial\Omega; \mathbb{R}^m)$ satisfy

(6.13)
$$\|\mathbf{f}\|_{W^{s-2,q}(\Omega)} + \|\chi\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g}\|_{W^{s-1/q,q}(\partial\Omega)} < \delta$$

then there exists a solution $(\mathbf{u}, p) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ of (1.3), (1.4) if and only if (5.2) holds. Moreover, there is a unique solution satisfying

$$\|\mathbf{u}\|_{W^{s,q}(\Omega)} < \epsilon$$

and (5.3). If (\mathbf{u}, p) is a solution of (1.3), (1.4) satisfying (6.14) and (5.3) then

$$\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|p\|_{W^{s-1,q}(\Omega)} \le C \left(\|\mathbf{f}\|_{W^{s-2,q}(\Omega)} + \|\chi\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g}\|_{W^{s-1/q,q}(\partial\Omega)} \right).$$

Proof. If $(\mathbf{u}, p) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ is a solution of (1.3), (1.4), then (5.2) holds by Lemma 5.1.

Define

$$L(\mathbf{u}) := a |\mathbf{u}| \mathbf{u} + b(\mathbf{u} \cdot \nabla) \mathbf{u}.$$

According to Lemma 6.3 and Lemma 6.4 there is a constant C_1 such that

$$||L\mathbf{u}||_{W^{s-2,q}(\Omega)} \le C_1 ||\mathbf{u}||^2_{W^{s,q}(\Omega)}$$

 $\|L\mathbf{u} - L\mathbf{v}\|_{W^{s-2,q}(\Omega)} \le C_1 \|\mathbf{u} - \mathbf{v}\|_{W^{s,q}(\Omega)} (\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|\mathbf{v}\|_{W^{s,q}(\Omega)})$

for all $\mathbf{u}, \mathbf{v} \in W^{s,q}(\Omega; \mathbb{R}^m)$. (If m < 4, s = 1 and q = 2 then 2m/(m+1) < 2 = qand $m/2 \le 2 = q$. If m = 2 and 4/3 < q < 4 then 2m/(m+1) = 4/3 < q and m/(m-1) = 2 = m. If m = 3, s = 1 and 3/2 < q < 3 then 2m/(m+1) = m/(m+1)6/4 = 3/2 < q and m/2 = 3/2 < q. If m = 3, 1 < s < 2 and q > m/(s+1)

then q > 3/(s+1) = 6/(2s+2) > 6/(3+2s). If $m \le 3$ and s = 1 then $q > 1 \ge m/(2+s)$. If m = 4, s = 1 and q = 2 then m/(2+s) = 4/3 < 2 = q. If s = 1 and m/(m-2+s) < q < m/s, then m/(m-1) < q < m and therefore $q \ge m/2 > m/(2+s)$.)

According to Theorem 5.4 there is a positive constant C_2 such that the following holds: If $\mathbf{f} \in W^{s-2,q}(\Omega; \mathbb{R}^m)$, $\chi \in W^{s-1,q}(\Omega)$ and $\mathbf{g} \in W^{s-1/q,q}(\partial\Omega; \mathbb{R}^m)$ satisfy (5.2) then there is a unique solution $(\mathbf{u}, p) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ of (1.1), (1.4) satisfying (5.3). Moreover,

 $\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|p\|_{W^{s-1,q}(\Omega)} \le C_2 \left(\|\mathbf{f}\|_{W^{s-2,q}(\Omega)} + \|\chi\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g}\|_{W^{s-1/q,q}(\partial\Omega)} \right).$ Put

$$\epsilon := \frac{1}{4(C_1+1)(C_2+1)}, \qquad \delta := \frac{\epsilon}{2(C_2+1)}.$$

If $(\mathbf{u}, p) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ is a solution of (1.3), (1.4) satisfying (6.14) and (5.3), and $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ is a solution of

$$\Delta \tilde{\mathbf{u}} + \lambda \tilde{\mathbf{u}} + a |\tilde{\mathbf{u}}| \tilde{\mathbf{u}} + b(\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}} + \nabla \tilde{p} = \tilde{\mathbf{f}}, \ \nabla \cdot \tilde{\mathbf{u}} = \tilde{\chi} \quad \text{in } \Omega,$$
$$\tilde{\mathbf{u}} + \beta \int_{\Omega} \tilde{\mathbf{u}} \ \mathrm{d}x = \tilde{\mathbf{g}} \quad \text{on } \partial\Omega, \qquad \int_{\Omega} \tilde{p} \ \mathrm{d}x = 0$$

and $\|\tilde{\mathbf{u}}\|_{W^{s,q}(\Omega)} < \epsilon$, then

$$\begin{aligned} \|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{s,q}(\Omega)} + \|p - \tilde{p}\|_{W^{s-1,q}(\Omega)} &\leq C_2(\|\mathbf{f} - \tilde{\mathbf{f}}\|_{W^{s-2,q}(\Omega)} + \|\chi - \tilde{\chi}\|_{W^{s-1,q}(\Omega)} \\ &+ \|\mathbf{g} - \tilde{\mathbf{g}}\|_{W^{s-1/q,q}(\partial\Omega)} + \|L\mathbf{u} - L\tilde{\mathbf{u}}\|_{W^{s-2,q}(\Omega)}) \leq C_2(\|\mathbf{f} - \tilde{\mathbf{f}}\|_{W^{s-2,q}(\Omega)} \\ &+ \|\chi - \tilde{\chi}\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g} - \tilde{\mathbf{g}}\|_{W^{s-1/q,q}(\partial\Omega)} + C_1 2\epsilon \|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{s,q}(\Omega)}) \end{aligned}$$

 $\leq C_{2}(\|\mathbf{f} - \tilde{\mathbf{f}}\|_{W^{s-2,q}(\Omega)} + \|\chi - \tilde{\chi}\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g} - \tilde{\mathbf{g}}\|_{W^{s-1/q,q}(\partial\Omega)}) + \frac{1}{2}\|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{s,q}(\Omega)}.$ Thus

$$\|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{s,q}(\Omega)} + \|p - \tilde{p}\|_{W^{s-1,q}(\Omega)}$$

$$\leq 2C_2(\|\mathbf{f}-\mathbf{f}\|_{W^{s-2,q}(\Omega)}+\|\chi-\tilde{\chi}\|_{W^{s-1,q}(\Omega)}+\|\mathbf{g}-\tilde{\mathbf{g}}\|_{W^{s-1/q,q}(\partial\Omega)}).$$

This gives the uniqueness of a solution of (1.3), (1.4) satisfying (6.14) and (5.3). For $\tilde{\mathbf{u}} \equiv 0$, $\tilde{p} \equiv 0$, $\tilde{\mathbf{f}} \equiv 0$, $\tilde{\chi} \equiv 0$, $\tilde{\mathbf{g}} \equiv 0$ we have

$$\|\mathbf{u}\|_{W^{s,q}(\Omega)} + \|p\|_{W^{s-1,q}(\Omega)} \le 2C_2 \left(\|\mathbf{f}\|_{W^{s-2,q}(\Omega)} + \|\chi\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g}\|_{W^{s-1/q,q}(\partial\Omega)} \right).$$

Denote $E := \{ \mathbf{u} \in W^{s,q}(\Omega; \mathbb{R}^m); \|\mathbf{u}\|_{W^{s,q}(\Omega)} \leq \epsilon \}$. Choose $\mathbf{f} \in W^{s-2,q}(\Omega; \mathbb{R}^m), \chi \in W^{s-1,q}(\Omega)$ and $\mathbf{g} \in W^{s-1/q,q}(\partial\Omega; \mathbb{R}^m)$ satisfying (6.13) and (5.2). For a fixed $\mathbf{v} \in E$ there exists a unique solution $(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}) \in W^{s,q}(\Omega; \mathbb{R}^m) \times W^{s-1,q}(\Omega)$ of

$$-\Delta \mathbf{u}^{\mathbf{v}} + \lambda \mathbf{u}^{\mathbf{v}} + \nabla p^{\mathbf{v}} = \mathbf{f} - L(\mathbf{v}), \ \nabla \cdot \mathbf{u}^{\mathbf{v}} = \chi \quad \text{in } \Omega,$$
$$\mathbf{u}^{\mathbf{v}} + \beta \int_{\Omega} \mathbf{u}^{\mathbf{v}} \, \mathrm{d}x = \mathbf{g} \quad \text{on } \partial\Omega, \qquad \int_{\Omega} p^{\mathbf{v}} \, \mathrm{d}x = 0.$$

Clearly,

$$\begin{aligned} \|\mathbf{u}^{\mathbf{v}}\|_{W^{s,q}(\Omega)} &\leq C_2 \left(\|\mathbf{f}\|_{W^{s-2,q}(\Omega)} + \|L\mathbf{v}\|_{W^{s-2,q}(\Omega)} + \|\chi\|_{W^{s-1,q}(\Omega)} + \|\mathbf{g}\|_{W^{s-1/q,q}(\partial\Omega)} \right) \\ &< C_2 \delta + C_2 C_1 \|\mathbf{v}\|_{W^{s,q}(\Omega)}^2 = \frac{C_2 \epsilon}{2(C_2 + 1)} + C_2 C_1 \epsilon \frac{1}{4(C_1 + 1)(C_2 + 1)} \leq \epsilon. \end{aligned}$$

So $\mathbf{u}^{\mathbf{v}} \in E$. If $\mathbf{v}, \mathbf{w} \in E$ then

$$\begin{aligned} \|\mathbf{u}^{\mathbf{v}} - \mathbf{u}^{\mathbf{w}}\|_{W^{s,q}(\Omega)} &\leq C_2 \|L\mathbf{v} - L\mathbf{w}\|_{W^{s-2,q}(\Omega)} \\ &\leq C_2 C_1 \|\mathbf{w} - \mathbf{v}\|_{W^{s,q}(\Omega)} \left(\|\mathbf{w}\|_{W^{s,q}(\Omega)} + \|\mathbf{v}\|_{W^{s,q}(\Omega)} \right) \leq 2C_2 C_1 \epsilon \|\mathbf{w} - \mathbf{v}\|_{W^{s,q}(\Omega)}. \end{aligned}$$

But $2C_2C_1\epsilon < 1$. Therefore Banach's fixed point theorem forces that there exists $\mathbf{v} \in E$ such that $\mathbf{u}^{\mathbf{v}} = \mathbf{v}$. (See [8, Satz 1/24].) For such \mathbf{v} the pair $(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}})$ is a solution of (1.3), (1.4).

7. Appendix

Proposition 7.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary. Let $0 < s(1), s(2) < \infty$, $\min(s(1), s(2)) \ge s > -\infty$ and 1 . Suppose that <math>s(1) + s(2) - s > m/p. Then there exists a positive constant C such that

$$||fg||_{W^{s,p}(\Omega)} \le C ||f||_{W^{s(1),p}(\Omega)} ||g||_{W^{s(2),p}(\Omega)}$$

for all $f \in W^{s(1),p}(\Omega)$, $g \in W^{s(2),p}(\Omega)$.

(See [24, Lemma 4.3].)

8. Declarations

- Funding: The work was supported by RVO: 67985840.
- Conflict of interest: The author discloses financial or non-financial interests that are directly or indirectly related to this paper.

References

- [1] Adams R. A. and Fournier, J. L. (2003), Sobolev Spaces, Elsevier, Oxford.
- [2] Adams, D. R. and Hedberg, L. I. (1996), Function spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften 314, Springer-Verlag, Berlin Heidelberg.
- [3] Agranovich, M. S. (2015), Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Switzerland.
- [4] Amann, H. and Escher, J. (2009), Analysis III, Birkhäuser, Basel Boston Berlin.
- [5] Amrouche, Ch. and Girault, V. (1994), "Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension", *Czechoslovak Mathematical Journal* 44, 109–140.
- [6] Boyer, F. and Fabrie, P. (2013), Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York.
- [7] Devore, R. A. and Sharpley, R. C. (1993), "Besov spaces on domains in R^d", Transactions of the Mathematical Society 335, 843–864.
- [8] Dobrowolski, M. (2006), Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und elliptische Differentialgleichungen, Springer-Verlag Berlin Heidelberg.
- [9] Farwig, R. and Sohr, H. (1994), "Generalized resolvent estimates for the Stokes system in bounded and unbounded domains", *Journal of the Mathematical Society of Japan* 46, 607– 643.
- [10] Fröhlich, A. (2007), "The Stokes operator in weighted L^q-spaces II: weighted resolvent estimates and maximal L^p-regularity", Mathematische Annalen 339, 287–316.
- [11] Galdi, G.P., Simader, G. and Sohr, H. (1994), "On the Stokes problem in Lipschitz domains", Annali di Matematica Pura et Applicata 167, 147–163.
- [12] Giga, Y. (1981), "Analycity of the semigroup generated by the Stokes operator in L_r spaces", Mathematische Zeitschrift **178**, 297–329.
- [13] Grisvard, P. (2011), Elliptic Problems in Nonsmooth Domains, SIAM, Philadelphia.
- [14] Grosan, T., Kohr, M. and Wendland, W. L. (2015), "Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains", *Mathematical Methods* in the Applied Sciences 38, 3615–3628.
- [15] Gutt, R. and Grosan, T. (2015), "On the lid-driven problem in a porous cavity: A theoretical and numerical approach", *Applied Mathematics and Computation* **266**, 1070–1082.
- [16] Jerison, D. and Kenig, C. E. (1995), "The inhomogeneus Dirichlet problem in Lipschitz domains", Journal of Functional Analysis 130, 161–219.
- [17] Kohr, M., Lanza de Cristoforis and M., Wendland, W. L. (2015), "Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rⁿ", Zeitschrift für Angewandte Mathematik und Physik 66, 833–864.

- [18] Kohr, M., Medková, D. and Wendland, W. L. (2017), "On the Oseen-Brinkman flow around an (m-1)-dimensional solid obstacle", Monatshefte für Mathematik **183**, 269–302.
- [19] Kufner, A., John, O. and Fučík, S. (1977), Function Spaces, Academia Prague.
- [20] Lieb, E. H. and Loss, M. (1997), Analysis, AMS, USA.
- [21] Medková, D. (2016), "Bounded solutions of the Dirichlet problem for the Stokes resolvent system", Complex Variables and Elliptic Equations 61, 1689–1715.
- [22] Medková, D. (2018), "The Robin problem for the Brinkman system and for the Darcy-Forchheimer-Brinkman system", Zeitschrift für Angewandte Mathematik und Physik 69, article 132.
- [23] Medková, D. (2018), The Laplace equation, Springer, Cham.
- [24] Medková, D. (2023), "One Navier's problem for the Brinkman system", Annali dell' Univiversitá Ferrara, online first, DOI: 10.1007/s11565-023-00458-5.
- [25] Mitrea, D. and Mitrea, M. (2008), "The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains", *Communications on Pure and Applied Analysis* 7, 1295–1333.
- [26] Mitrea and M., Wright, M. (2012), Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque 344, Paris.
- [27] Müller, V. (2007), Spectral Theorey of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory Advances and Applications, Birkhäuser, Basel.
- [28] Nečas, J. (1967), Les méthodes directes en théorie des équations élliptiques, Academia, Prague.
- [29] Papuc, I. (2021), "On a Dirichlet problem for the Darcy-Forchheimer-Brinkman system with application to lid-driven porous cavity flow with internal square block", Applied Mathematics and Computation 402, article no. 125906.
- [30] Schechter, M. (2002), Principles of Functional Analysis, American Mathematical Society, Providence, Rhode Island.
- [31] Shibata Y. (2013), "Generalized resolvent estimates of the Stokes equations with first order boundary conditions in a general domain", Journal of Mathematical Fluid Mechanics 15, 1-40.
- [32] Tartar, L. (2007), An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag, Berlin Heidelberg.
- [33] Taylor, A. E. (1967), Introduction to Functional Analysis, John Wiley & Sons, New York.
- [34] Triebel, H. (1972), Höhere Analysis, VEB Deutscher Verlag der Wissenschaften, Berlin.
- [35] Triebel, H. (1978), Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin.
- [36] Triebel, H. (1983), Theory of function spaces, Birkhäuser, Basel Boston Stuttgart.
- [37] Triebel, H. (2006), Theory of function spaces III, Birkhäuser, Basel Boston Stuttgart.
- [38] Varnhorn, W. (1994), The Stokes equations, Akademie Verlag, Berlin.
- [39] Yosida, K. (1965), Functional Analysis, Springer-Verlag, Berlin.

Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic

E-mail address: medkova@math.cas.cz