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THE DIRICHLET PROBLEM FOR THE BRINKMAN SYSTEM
IN SOBOLEV SPACES

DAGMAR MEDKOVÁ†

Abstract. The Dirichlet problem for the Brinkman system and the Darcy-

Forchheimer-Brinkman system are studied in W s,q(Ω, Rm) × W s−1,q(Ω) for

bounded domains Ω ⊂ Rm with Lipschitz boundary.

1. Introduction

The paper is devoted to the Dirichlet problem for the Brinkman system

(1.1) − ∆u + λu + ∇p = f , ∇ · u = χ in Ω

(1.2) u = g on ∂Ω

and for the Darcy-Forchheimer-Brinkman system

(1.3) − ∆u + λu + a|u|u + b(u · ∇)u + ∇p = f , ∇ · u = χ in Ω.

Instead of the Dirichlet problem we shall study a bit more general nonlocal bound-
ary condition

(1.4) u + β

∫

Ω

u dx = g on ∂Ω.

The problem is studied in Sobolev spaces W s,q(Ω, Rm) × W s−1,q(Ω) in bounded
domains with Lipschitz boundary. Here 1 ≤ s < ∞ and 1 < q < ∞. The boundary
might be disconnected.

The Dirichlet problem for the Brinkman system in Sobolev spaces was studied
in the following papers: [17] proves the existence of a solution in Hs+1/2(Ω; Rm)×
Hs−1/2(Ω) for 0 < s < 1 and a bounded domain Ω ⊂ Rm with connected Lipschitz
boundary. The same result was proved in [29] for a bounded domain Ω ⊂ Rm

with Lipschitz boundary formed by two components. [12] is devoted to solutions
in W 2,q(Ω; Rm) × W 1,q(Ω) for a bounded domain with smooth boundary and 1 <
q < ∞. The same problem is studied in [9] and [10] for a bounded domain Ω ⊂ Rm

with boundary of class C1,1. Y. Shibata studies this problem in [31] for domains
with boundary formed by two components.

The papers [14] and [15] studied the Dirichlet problem for the homogeneous
Darcy-Forchheimer-Brinkman system in W s,2(Ω, Rm)×W s−1,2(Ω), where 1 ≤ s <
3/2, Ω ⊂ Rm is a bounded domain with connected Lipschitz boundary and m = 2
or m = 3. The same problem was studied in [29] for domains which boundary is
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formed by two components. They supposed that a and b are positive constants,
f ≡ 0, χ ≡ 0 and ∫

S

g · nΩ dσ = 0

for each component S of ∂Ω.
In this paper we study the Brinkman system (1.1) in bounded domains Ω ⊂ Rm

with Lipschitz boundary. Instead of the Dirichlet condition (1.2) we have a bit
more general nonlocal boundary condition (1.4). We find a necessary and sufficient
condition for the existence of a solution in W s,q(Ω, Rm)×W s−1,q(Ω) with 1 ≤ s <
∞, 1 < q < ∞ in the following cases:

(1) s = 1 and q = 2.
(2) Ω ⊂ R2, s = 1 and 4/3 < q < 4.
(3) Ω ⊂ R3, s = 1 and 3/2 < q < 3.
(4) ∂Ω is of class C1 and s = 1.
(5) ∂Ω is of class Ck,1 with k ∈ N and s ≤ k + 1.

We show that the velocity u is unique and the pressure p is unique up to an additive
constant. Then we get results for the Darcy-Forchheimer-Brinkman system from
the results for the Brinkman system using the fixed point theorem.

2. Function spaces

First we remember definitions of several function spaces.
Let Ω ⊂ Rm be an open set. We denote by C∞

c (Ω) the space of infinitely
differentiable functions with compact support in Ω. If k ∈ N0, 1 < q < ∞ we define
the Sobolev space W k,q(Ω) := {f ∈ Lq(Ω); ∂αf ∈ Lq(Ω) for |α| ≤ m} endowed
with the norm

‖u‖W k,q(Ω) =
∑
|α|≤k

‖∂αu‖Lq(Ω).

(Clearly W 0,q(Ω) = Lq(Ω).) If s = k + λ, 0 < λ < 1 and 1 < q < ∞ denote
W s,q(Ω) := {u ∈ W k,q(Ω); ‖u‖W s,q(Ω) < ∞} where

‖u‖W s,q(Ω) =


‖u‖q

W k,q(Ω)
+

∑
|α|=k

∫

Ω×Ω

|∂αu(x) − ∂αu(y)|q

|x − y|m+qλ
d(x, y)




1/q

.

Denote by W̊ k,p(Ω) the closure of C∞
c (Ω) in W k,p(Ω).

If X is a Banach space we denote by X ′ its dual space. If 0 < s < ∞, denote
W−s,q(Ω) := [W̊ s,q′

(Ω)]′, where q′ = q/(q − 1).
If Ω ⊂ V ⊂ Ω then we denote by Lq

loc(V ) the space of all measurable functions
u on Ω such that u ∈ Lq(ω) for each bounded open set ω with ω ⊂ V .

If Ω ⊂ Rm is an open set with compact Lipschitz boundary, 0 < s < 1, 1 < q <
∞, denote W s,q(∂Ω) = {u ∈ Lq(∂Ω); ‖u‖W s,q(∂Ω) < ∞} where

‖u‖W s,q(∂Ω) =


‖u‖q

Lq(∂Ω) +
∫

∂Ω×∂Ω

|u(x) − u(y)|q

|x − y|m−1+qs
d(x, y)




1/q

.

Further, W−s,q(∂Ω) := [W s,q′
(∂Ω)]′, where q′ = q/(q − 1).

We denote C∞
c (Ω; Rm) := {(v1, . . . , vm); vj ∈ C∞

c (Ω)}. Similarly for other spaces
of functions.
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We say that Ω ⊂ Rm is a domain if it is an open connected set.

Proposition 2.1. Let Ω ⊂ Rm be a bounded open set with Lipchitz boundary,
−∞ < t < s < ∞ and 1 < q < ∞. Then the identity I is a compact mapping from
W s,q(Ω) to W t,q(Ω).

Proof. Suppose first that 0 ≤ t. Choose r and τ such that t < τ < r < s and
τ , r are not integer. Then I : W s,q(Ω) → W r,q(Ω), I : W τ,q(Ω) → W t,q(Ω)
continuously by [28, Chap. 2, §5.4, Lemma 5.4]. It is show in [37, Theorem 1.97]
for Besov spaces that I : Bq,q

r (Ω) → Bq,q
τ (Ω) compactly. But W r,q(Ω) = Bq,q

r (Ω),
W τ,q(Ω) = Bq,q

τ (Ω) by [7, Theorem 6.7]. So, I : W s,q(Ω) → W t,q(Ω) compactly.
Let now s ≤ 0. Put q′ = q/(q−1). We have proved that W−t,q′

(Ω) ↪→ W−s,q′
(Ω)

compactly. So, [W−s,q′
(Ω)]′ ↪→ [W−t,q′

(Ω)]′ compactly by [27, § 15, Theorem 4].
Suppose now that fn is a bounded sequence in W s,q(Ω). According to [39, Chapter
IV, §1, Theorem] there exist f̃n ∈ [W−s,q′

(Ω)]′ such that f̃n are extensions of fn

and ‖f̃n‖ = ‖fn‖. Since [W−s,q′
(Ω)]′ ↪→ [W−t,q′

(Ω)]′ compactly, there exists a
sub-sequence f̃n(k) and f̃ ∈ [W−t,q′

(Ω)]′ such that f̃n(k) → f̃ in [W−t,q′
(Ω)]′ as

k → ∞. So, f̃n(k) → f̃ in W t,q(Ω) as k → ∞. Therefore, the identity I is a
compact mapping from W s,q(Ω) to W t,q(Ω).

If t < 0 and 0 ≤ s, then I : W s,q(Ω) → Lq(Ω) continuously and I : Lq(Ω) →
W t,q(Ω) compactly. If t ≤ 0 and 0 < s, then I : W s,q(Ω) → Lq(Ω) compactly
and I : Lq(Ω) → W t,q(Ω) continuously. In both cases I : W s,q(Ω) → W t,q(Ω)
compactly. �

Lemma 2.2. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, 1 < p, q <
∞ and 0 < s < ∞. If sp < m suppose moreover that q ≤ mp/(m − sp). Then
W s,p(Ω) ↪→ Lq(Ω).

Proof. Suppose first that s ∈ N. Then W s,p(Ω) ↪→ Lq(Ω) by [19, Theorem 5.7.7].
Let now s �∈ N. Then W s,p(Ω) is equal to the Besov space Bp,p

s (Ω) by ([7,
Theorem 6.7]). If sp > m then W s,p(Ω) = Bp,p

s (Ω) ↪→ Lq(Ω) by [1, Theorem 7.34].
If sp ≤ m then W s,p(Ω) = Bp,p

s (Ω) ↪→ Lq(Ω) by [35, §46.2, Theorem]. �

3. Volume potential

Let λ ≥ 0. Then there exists a unique fundamental solution Eλ = (Eλ
ij), Qλ =

(Qλ
j ) of the Brinkman system

(3.1) − ∆u + λu + ∇p = 0, ∇u = 0

in Rm such that Eλ(x) = o(|x|), Qλ(x) = o(|x|) as |x| → ∞. (Here ∆f = ∂2
1f +

∂2
2f + · · ·+∂2

mf is the Laplace operator of f .) Remember that for i, j ∈ {1, . . . ,m}
we have

−∆Eλ
ij + λEλ

ij + ∂iQ
λ
j = δijδ0, ∂1E

λ
1j + . . . ∂mEλ

mj = 0,

−∆Eλ
i,m+1 + λEλ

i,m+1 + ∂iQ
λ
m+1 = 0, ∂1E

λ
1,m+1 + . . . ∂mEλ

m,m+1 = δ0.

Clearly,
Eλ(−x) = Eλ(x), Qλ(−x) = −Qλ(x).

If j ∈ {1, . . . ,m} then

Qλ
j (x) = Eλ

j,m+1(x) =
1

σm

xj

|x|m
,
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Qλ
m+1 =

{
δ0(x) + (λ/σm) ln |x|−1, m = 2,
δ0(x) + (λ/σm)(m − 2)−1|x|2−m, m > 2,

where σm is the area of the unit sphere in Rm. (See [38, p. 60].) The expressions of
Eλ can be found in the book [38, Chapter 2]. We omit them for the sake of brevity.

For λ = 0 we obtain the fundamental solution of the Stokes system. If i, j ∈
{1, . . . ,m}, the components of E0 are given by

(3.2) E0
ij(x) =

1
2σm

{
δij

(m − 2)|x|m−2
+

xixj

|x|m

}
, m ≥ 3

(3.3) E0
ij(x) =

1
4π

{
δij ln

1
|x|

+
xjxk

|x|2

}
, m = 2,

(see, e.g., [38, p. 16]).
If i, j ≤ m then

Eλ
ij = Eλ

ji,

|Eλ
ij(x) − E0

ij(x)| = O(1) as |x| → 0
by [38, p. 66] and

|∇Eλ
ij(x) −∇E0

ij(x)| = O(|x|2−m) as |x| → 0

by [21, Lemma 4.1].
If i, j ≤ m and λ > 0, then

∂αEλ
ij(x) = O(|x|−m−|α|), |x| → ∞

for each muliindex α. (See [18, Lemma 3.1].)
If f = (f1, . . . , fm) where f1, . . . , fm and g are distributions in Rm with compact

support and λ ≥ 0, then

v := Eλ ∗
(

f
g

)
, p := Qλ ∗

(
f
g

)

are well defined and

−∆v + λv + ∇p = f , ∇ · v = g in Rm.

We denote Q(x) = (Q0
1(x), . . . , Q0

m(x)) = (Qλ
1 (x), . . . , Qλ

m(x)). By Ẽλ we denote
the matrix of the type m × m, where Ẽλ

ij(x) = Eλ
ij(x) for i, j ≤ m.

Proposition 3.1. Let ϕ, ψ ∈ C∞
c (Rm), 1 < q < ∞ and s ∈ R1. Then there exists

a constant C such that if f ∈ W s,q(Rm; Rm) then ϕ[Q ∗ (ψf)] ∈ W s+1,q(Rm) and

(3.4) ‖ϕ[Q ∗ (ψf)]‖W s+1,q(Rm) ≤ C‖f‖W s,q(Rm).

Proof. Let h∆ be the fundamental solution of the Laplace equation given by

h∆(x) :=
{

σ−1
2 ln |x|, m = 2,

(2 − m)−1σ−1
m |x|2−m, m > 2

Then Qj = ∂jh∆. Thus Qj ∗ (ψfj) = (∂jh∆) ∗ (ψfj) = ∂j [h∆ ∗ (Ψfj)]. So,

ϕ[Q ∗ (ψf)] =
m∑

j=1

{∂j [ϕh∆ ∗ (Ψfj)] − (∂jϕ)[h∆ ∗ (Ψfj)]}.

[23, Proposition 3.18.5], [8, Lemma 6.36] and [13, Lemma 1.4.1.3] give that ϕ[Q ∗
(ψf)] ∈ W s+1,q(Rm) and the estimate (3.4) holds. �
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Proposition 3.2. Let 0 < λ < ∞, 1 < q < ∞, s ∈ R1. Then the mapping
f �→ Ẽλ ∗ f for f ∈ C∞

c (Rm, Rm) can be extended by a unique way as a bounded
linear operator from W s,q(Rm, Rm) to W s+2,q(Rm, Rm).

(See [22, Proposition 6.1].)

Proposition 3.3. Let ϕ, ψ ∈ C∞
c (Rm), 1 < q < ∞ and s ∈ R1. Then there exists

a constant C such that if f ∈ W s,q(Rm; Rm) then ϕ[Ẽ0 ∗ (ψf)] ∈ W s+2,q(Rm; Rm)
and

‖ϕ[Ẽ0 ∗ (ψf)]‖W s+2,q(Rm) ≤ C‖f‖W s,q(Rm).

Proof. Let k ∈ N0, f ∈ W k,q(Rm; Rm). Then

∆[Ẽ0 ∗ (ψf)] = ∇[Q ∗ (ψf)] − ψf ∈ W k,q
loc (Rm; Rm)

by the definition of a fundamental solution and Proposition 3.1. Hence Ẽ0 ∗
(ψf) ∈ W k+2,q

loc (Rm; Rm) by [23, Proposition 3.18.3 and Proposition 3.18.2]. De-
note Vϕ,ψf = ϕ[Ẽλ ∗ (ψf)]. Then Vϕ,ψ : W k,q(Rm; Rm) → W k+2,q(Rm; Rm). If
fn → f in W k,q(Rm; Rm) and Vϕ,ψfn → g in W k+2,q(Rm; Rm), then Vϕ,ψf = g
because the convolution is continuous in the sense of distributions. So, Vϕ,ψ :
W k,q(Rm;Rm) → W k+2,q(Rm;Rm) is a bounded operator by the Closed graph
theorem ([30, Theorem 3.10]).

Let k ∈ N0. Denote q′ = q/(q − 1). Then W k,q′
(Rm) = W̊ k,q′

(Rm) by [34,
§2.3.3], [35, §2.12, Theorem] and [2, Theorem 4.2.2]. Since Vψ,φ : W k,q′

0 (Rm;Rm) →
W k+2,q′

0 (Rm;Rm) is bounded, the adjoint operator [Vψ,ϕ]′ : W−k−2,q(Rm; Rm) →
W−k,q(Rm; Rm) is bounded, too. If g,h ∈ C∞

c (Rm; Rm) then
∫

Rm

g(x)Vψ,ϕf(x) dx =
∫

Rm

f(y)Vϕ,ψg(y) dy,

because Ẽ0(−x) = Ẽ0(x) and Ẽ0
ij = Ẽ0

ji by (3.2) and (3.3). Thus Vϕ,ψ = [Vψ,ϕ]′ :
W−k−2,q(Rm; Rm) → W−k,q(Rm; Rm) is bounded.

According to According to [35, §2.4.2, Theorem 1] and [2, Theorem 4.2.2] one
has

(Lq(Rm),W 2,q(Rm))1/2 = W 1,q(Rm), (W−2,q(Rm), Lq(Rm))1/2 = W−1,q(Rm).

Since Vϕ,ψ : Lq(Rm; Rm) → W 2,q(Rm; Rm), Vϕ,ψ : W−2,q(Rm; Rm) → Lq(Rm; Rm)
are bounded, [1, p. 248] gives that Vϕ,ψ : W−1,q(Rm; Rm) → W 1,q(Rm; Rm) is
bounded.

Suppose that s is not integer. Choose k ∈ N such that |s| < k. Put θ =
(s + k + 2)/(2k + 2). Then

(W−k−2,q(Rm),W k,q(Rm))θ,q = W s,q(Rm),

(W−k,q(Rm),W k+2,q(Rm))θ,q = W s+2,q(Rm)

by [7, Theorem 6.7] and [36, §2.4.2, Theorem]. Since Vϕ,ψ : W k,q(Rm; Rm) →
W k+2,q(Rm; Rm), Vϕ,ψ : W−k−2,q(Rm; Rm) → W−k,q(Rm; Rm) are bounded oper-
ators, [32, Lemma 22.3] gives that Vϕ,ψ : W s,q(Rm; Rm) → W s+2,q(Rm; Rm) is a
bounded operator. �
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4. Brinkman single layer potential

Let now Ω ⊂ Rm be an open set with compact Lipschitz boundary. If 1 < q < ∞
and g ∈ Lq(∂Ω, Rm) then the single-layer potential for the Brinkman system Eλ

Ωg
and its associated pressure potential QΩg are given by

Eλ
Ωg(x) :=

∫

∂Ω

Ẽλ(x − y)g(y) dσ(y),

QΩg(x) :=
∫

∂Ω

Q(x − y)g(y) dσ(y).

More generally, if g = (g1, . . . , gm), where gj are distributions supported on ∂Ω
then we define

Eλ
Ωg(x) := 〈g, Ẽλ(x − ·)〉, QΩg(x) := 〈g, Q(x − ·)〉.

Remark that (Eλ
Ωg, QΩg) is a solution of the Brinkman system (3.1) in the set

Rm \ ∂Ω.

Lemma 4.1. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, 0 < λ <
∞ and 1 < q < ∞. Then Eλ

Ω is a bounded linear operator from W−1/q,q(∂Ω; Rm)
to W 1,q(Ω; Rm). If g ∈ W−1/q,q(∂Ω; Rm) then QΩg ∈ Lq

loc(Rm). If Ω is bounded
then E0

Ω is a bounded linear operator from W−1/q,q(∂Ω; Rm) to W 1,q(Ω; Rm).

Proof. Put q′ = q/(q − 1). The trace operator γΩ is a bounded operator from
W 1,q′

(Ω) to W 1−1/q′
(∂Ω) by [19, Theorem 6.8.13]. For g ∈ W−1/q,q(∂Ω; Rm)

define Pg ∈ W−1,q(Rm; Rm) by

〈Pg,Ψ〉 := 〈g, γΩΨ〉, Ψ ∈ W 1,q′
(Rm; Rm).

Since Eλ
Ωg = Ẽλ ∗ (Pg) and P : W−1/q,q(∂Ω; Rm) → W−1,q(Rm; Rm) is bounded,

Proposition 3.2 gives that Eλ
Ω is a bounded linear operator from W−1/q,q(∂Ω; Rm)

to W 1,q(Ω; Rm). Since QΩg = Q∗(Pg), Proposition 3.1 gives that QΩg ∈ Lq
loc(Rm)

for g ∈ W−1/q,q(∂Ω; Rm).
Suppose now that Ω is bounded. Since E0

Ωg = Ẽ0 ∗ (Pg), Proposition 3.3 gives
that E0

Ω is a bounded linear operator from W−1/q,q(∂Ω; Rm) to W 1,q(Ω; Rm). �

We denote by Eλ
Ωg the trace of Eλ

Ωg on ∂Ω.

Proposition 4.2. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary and
4/3 < q < 4. Denote by X the set of all vector functions f on ∂Ω such that for
each component S of ∂Ω there exists a constant cS with f = cSnΩ on S; Y = {g ∈
W 1−1/q,q(∂Ω,R2);

∫
∂Ω

g · fdσ = 0 ∀f ∈ X}. For f = (f1, f2) ∈ W−1/q,q(∂Ω, R2)
and c ∈ R2 denote

(4.1) ẼΩ(f , c) =
[
E0
Ωf + c, (〈f1, 1〉∂Ω, 〈f2, 1〉∂Ω)/

∫

∂Ω

1 dσ

]
.

Then ẼΩ : [W−1/q,q(∂Ω, R2)/X] × R2 → Y × R2 is an isomorphism.

Proof. Put s = 1−1/q. Then 1/q− (s−1/2) = 1/q− (1−1/q)+1/2 = 2/q−1/2 =
(4−q)/(2q) > 0 because 4 > q. Further, (s+1/2)−1/q = 3/2−2/q = (3q−4)/(2q) >
0 because 4/3 < q. Using W t,q(∂Ω) = Bq,q

t (∂Ω) for t �∈ Z (see for example [7,
Theorem 6.7]), we get by [26, Theorem 10.5.3] that ẼΩ : [W−1/q,q(∂Ω, R2)/X] ×
R2 → Y × R2 is an isomorphism. �
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Proposition 4.3. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary and
3/2 < q < 3. Denote by X the set of all vector functions f on ∂Ω such that for
each component S of ∂Ω there exists a constant cS with f = cSnΩ on S; Y = {g ∈
W 1−1/q,q(∂Ω,R3);

∫
∂Ω

g · fdσ = 0 ∀f ∈ X}. Then E0
Ω : W−1/q,q(∂Ω, R3)/X → Y

is an isomorphism.

Proof. Put s = 1 − 1/q. Then 1/q − s/2 = 1/q − [1/2 − 1/(2q)] = (3 − q)/(2q) > 0
because 3 > q. Further, (s/2+1/2)−1/q = 1/2−1/(2q)+1/2−1/q = (2q−3)/(2q) >
0 because 3/2 < q. Using W t,q(∂Ω) = Bq,q

t (∂Ω) for t �∈ Z (see for example [7,
Theorem 6.7]), we get by [26, Theorem 10.5.3] that E0

Ω : W−1/q,q(∂Ω, R3)/X → Y
is an isomorphism. �

5. Boundary value problem for the Brinkman system

We begin with some auxiliary results.

Lemma 5.1. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary and 1 <
q < ∞. If u ∈ W 1,q(Ω; Rm) then

(5.1)
∫

Ω

∇ · u dx =
∫

∂Ω

u · nΩ dσ.

Proof. If u ∈ C∞(Rm; Rm) then the Green formula gives (5.1). Since C∞(Rm) is a
dense subset of W 1,q(Ω) by [1, Theorem 3.22] and the trace is a continuous operator
from W 1,q(Ω) to W 1−1/q,q(∂Ω) by [13, Theorem 1.5.1.2], we infer that (5.1) holds
for u ∈ W 1,q(Ω; Rm). �

Lemma 5.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. Let G
be a bounded component of Rm \ Ω and z ∈ G. Define w(x) := (x − z)/|x − z|m.
Then ∆w = 0, ∇ · w = 0 in Rm \ {z} and∫

∂G

w · nΩ dσ = −σm

where nΩ denotes the unit exterior normal of Ω and σm is the surface of the unit
sphere in Rm.

Proof. w(x) = C1∇h(x − z) where C1 is a constant and h(x) = ln |x| for m = 2
and h(x) = |x|2−m for m > 2. Since ∆h = 0 in Rm \ {0}, we infer that ∆w = 0,
∇ · w = 0 in Rm \ {z}.

Fix r > 0 such that for B := {x; |x − z| < r} we have B ⊂ G. Since ∇ · w = 0
in D := G \ B, Lemma 5.1 gives∫

∂G

w · nΩ dσ = −
∫

∂D

w · nD dσ −
∫

∂B

w · nB dσ = −
∫

D

∇ · w dx

−
∫

∂B

x − z

|x − z|m
· x − z

|x − z|
dσ = 0 −

∫

∂B

|x − z|1−m dσ = −σm.

�

Proposition 5.3. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary and
2 ≤ m ≤ 3. Let q ∈ (4/3, 4) for m = 2, and q ∈ (3/2, 3) for m = 3. Let λ = 0.
If f ∈ W−1,q(Ω; Rm), χ ∈ Lq(Ω) and g ∈ W 1−1/q,q(∂Ω; Rm) then there exists a
solution (u, p) ∈ W 1,q(Ω; Rm) × Lq(Ω) of (1.1), (1.2) if and only if

(5.2)
∫

∂Ω

g · nΩ dσ =
∫

Ω

χ dx.
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The velocity u is unique and the pressure p is unique up to an additive constant. If

(5.3)
∫

Ω

p dx = 0

then

(5.4) ‖u‖W 1,q(Ω) + ‖p‖Lq(Ω) ≤ C
(
‖f‖W−1,q(Ω) + ‖χ‖Lq(Ω) + ‖g‖W 1−1/q,q(∂Ω)

)

where C does not depend on f , χ and g.

Proof. If there is a solution of (1.1), (1.2) then (5.2) holds by Lemma 5.1.
Suppose now that (u, p) ∈ W 1,q(Ω; Rm)×Lq(Ω) is a solution of (1.1), (1.2) with

f ≡ 0, χ ≡ 0 and g ≡ 0. Remember that W 1,q(Ω) = F q,2
1 (Ω), Lq(Ω) = F q,2

0 (Ω) by
[37, Theorem 1.122]. Here F q,r

s (Ω) denote Triebel-Lizorkin spaces. Put s = 1−1/q.
If m = 2 then s − 1/2 < 1/q < s + 1/2. If m = 3 then s/2 < 1/q < s/2 + 1/2. So,
[26, Theorem 10.6.2] forces that u ≡ 0 and p is constant.

Now we prove the existence of a solution under assumption that f ≡ 0 and
χ ≡ 0. Let G(0), G(1), . . . , G(k) be components of Rm\Ω, where G(0) is unbounded.
Choose zj ∈ G(j) for j = 1, . . . , k. Put

wj(x) =
x − zj

|x − zj |m
.

Then −∆wj = 0, ∇ · wj = 0 in Rm \ {zj} by Lemma 5.2. For µ = (µ1, . . . , µm) ∈
W−1/q,q(∂Ω; Rm) put

VΩµ := E0
Ωµ +

k∑
j=1

〈µ, wj〉wj for m = 3,

VΩµ := E0
Ω

[
µ − (〈µ1, 1〉, 〈µ2, 1〉)

σ(∂Ω)
σ

]
+ (〈µ1, 1〉, 〈µ2, 1〉) +

k∑
j=1

〈µ,wj〉wj for m = 2,

Q̃Ωµ = QΩµ for m = 3,

Q̃Ωµ = QΩ

[
µ − (〈µ1, 1〉, 〈µ2, 1〉)

σ(∂Ω)
σ

]
for m = 2.

Here σ denotes the surface measure on ∂Ω. Then VΩµ ∈ W 1,q(Ω; Rm)∩C∞(Ω; Rm),
Q̃Ωµ ∈ Lq(Ω)∩C∞(Ω) by Lemma 4.1. Moreover, −∆VΩµ+∇Q̃Ωµ = 0, ∇·VΩµ = 0
in Ω. Denote by VΩµ the trace of VΩµ on ∂Ω. Proposition 4.2 and Proposition
4.3 force that VΩ : W−1/q,q(∂Ω; Rm) → W 1−1/q,q(∂Ω; Rm) is a Fredholm operator
with index 0.

We show that the dimension of the kernel of VΩ is at most 1. Suppose that
µ ∈ W−1/q,q(∂Ω; Rm) and VΩµ = 0. Since ∇·E0

Ων = 0 for all ν ∈ W−1/q,q(∂Ω; Rm),
∇ · d = 0 for all d ∈ R2 and ∇ · wj = 0 in G(i) for j = i, Lemma 5.1 gives

0 =
∫

∂G(i)

nG(i) · VΩµ dσ =
∫

G(i)

∇ · (VΩµ − 〈µ,wi〉wi) dx

+〈µ,wi〉
∫

∂G(i)

nG(i) · wi dσ = 〈µ,wi〉
∫

∂G(i)

nG(i) · wi dσ.

Since ∫

∂G(i)

nG(i) · wi dσ = 0
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by Lemma 5.2, we infer that

(5.5) 〈µ,wi〉 = 0 for i = 1, . . . , k.

We now show that there exist constants c0, c1, . . . , ck such that

(5.6) µ = cjnΩσ on ∂G(j).

If m = 3 then Proposition 4.3 gives that there exist constants c0, c1, . . . , ck such
that (5.6) holds. Let now m = 2. Then 0 = VΩµ = E0

Ωµ̃ + (〈µ1, 1〉, 〈µ2, 1〉), where

µ̃ = µ − (〈µ1, 1〉, 〈µ2, 1〉)
σ(∂Ω)

σ.

Let ẼΩ be given by (4.1). Since

ẼΩ(µ̃, (〈µ1, 1〉, 〈µ2, 1〉) = [VΩµ, 0] = [0, 0]

Proposition 4.2 gives that (〈µ1, 1〉, 〈µ2, 1〉) = (0, 0) and there are constants c0, . . . , ck

such that µ̃ = cjnΩ on ∂G(j). So, µ = µ̃ = cjnΩ on ∂G(j) for j = 0, . . . , k.
Therefore (5.6) holds for m = 2, 3. If i ≥ 1 then (5.5), (5.6) give

0 = 〈µ,wi〉 =
k∑

j=0

∫

∂G(j)

cjnΩ · wi dσ = −
∑
j �=0,i

cj

∫

G(j)

∇ · wi dx

+ci

∫

∂G(i)

nΩ · wi dσ + c0

∫

∂G(0)

nΩ · wi dσ

= −ci

∫

∂G(i)

σm + c0

∫

∂G(0)

nΩ · wi dσ

by Lemma 5.1 and Lemma 5.2. Therefore

ci = c0σ
−1
m

∫

∂G(0)

nΩ · wi dσ.

So, the dimension of the kernel of VΩ is at most 1.
Since VΩ : W−1/q,q(∂Ω; Rm) → W 1−1/q,q(∂Ω; Rm) is a Fredholm operator with

index 0, the co-dimension of the range of VΩ is at most 1. Since −∆VΩµ+∇Q̃Ωµ =
0, ∇ · VΩµ = 0 in Ω, the condition (5.2) gives that

VΩ(W−1/q,q(∂Ω; Rm)) = {g ∈ W 1−1/q,q(∂Ω; Rm);
∫

∂Ω

g · nΩ dσ = 0}.

So, if g ∈ W 1−1/q,q(∂Ω; Rm) satisfies∫

∂Ω

g · nΩ dσ = 0,

then there exists µ ∈ W−1/q,q(∂Ω; Rm) such that (VΩµ, Q̃Ωµ) ∈ W 1,q(Ω; Rm) ×
Lq(Ω) is a solution of (1.1), (1.2) with f ≡ 0, χ ≡ 0.

Let f ∈ W−1,q(Ω; Rm), χ ∈ Lq(Ω) and g ∈ W 1−1/q,q(∂Ω; Rm) satisfy (5.2).
Choose an open ball B in Rm such that Ω ⊂ B. Put χ̃ := χ in Ω, χ̃ := d in Rm \Ω,
where d is a constant such that

(5.7)
∫

B

χ̃ dx = 0.

Denote X := {v ∈ W̊ 1,q/(q−1)(B; Rm);v = 0 in B \Ω}. Then W̊ 1,q/(q−1)(Ω; Rm) =
{v|Ω;v ∈ X} by [2, Theorem 9.1.3] and thus f is a bounded linear operator on
X. According to Hahn-Banach theorem ([33, Theorem 4.3-A]) there exists f̃ ∈
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W−1,q(B; Rm) such that 〈f̃ ,v〉 = 〈f ,v〉 for all v ∈ X. Since (5.7) holds there exists
a solution (ũ, p̃) ∈ W 1,q(B, Rm) × Lq(B) of

−∆ũ + ∇p̃ = f̃ , ∇ · ṽ = χ̃ in B,

ũ = 0 on ∂B.

(See [11, Theorem 2.1].) Then −∆ũ + ∇p̃ = f , ∇ · ũ = χ in Ω. Lemma 5.1 forces
∫

∂Ω

ũ · nΩ dσ =
∫

Ω

∇ · ũ dx =
∫

Ω

χ dx.

Put g̃ = g − ũ on ∂Ω. Then g̃ ∈ W 1−1/q,q(∂Ω; Rm) by [19, Theorem 6.8.13].
According to (5.2) we have

∫

∂Ω

g̃ · nΩ dσ =
∫

∂Ω

g · nΩ dσ −
∫

∂Ω

ũ · nΩ dσ =
∫

Ω

χ dx −
∫

Ω

χ dx = 0.

We have proved that there exists a solution (v, ρ) ∈ W 1,q(Ω, Rm) × Lq(Ω) of

−∆v + ∇ρ = 0, ∇ · v = 0 in Ω,

v = g̃ on ∂Ω.

Put u := ũ + v, p := p̃ + ρ. Then (u, p) ∈ W 1,q(Ω; Rm) × Lq(Ω) is a solution of
(1.1), (1.2).

Define
L(u, p) := (−∆u + ∇p,∇ · p,u|∂Ω).

Then L is a bounded linear operator from W 1,q(Ω; Rm)×Lq(Ω) to W−1,q(Ω; Rm)×
Lq(Ω) × W 1−1/q,q(∂Ω; Rm). (See [19, Theorem 6.8.13], [37, Theorem 1.122], [25,
Proposition 7.6].) Denote by Y the set of (u, p) from W 1,q(Ω; Rm) × Lq(Ω) sat-
isfying (5.3). Further denote by Z the set of all (f , χ,g) from (W−1,q(Ω; Rm) ×
Lq(Ω) × W 1−1/q,q(∂Ω; Rm)) satisfying (5.2). We have proved that L : Y → Z is
an isomorphism. So, L−1 : Z → Y is an isomorphism, too. Thus there exists a
constant C such that (5.4) holds. �

Theorem 5.4. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, 1 ≤
s < ∞, 1 < q < ∞ and 0 ≤ λ, β < ∞. Suppose that one of the following conditions
is fulfilled:

(1) s = 1 and q = 2.
(2) Ω ⊂ R2, s = 1 and 4/3 < q < 4.
(3) Ω ⊂ R3, s = 1 and 3/2 < q < 3.
(4) ∂Ω is of class C1 and s = 1.
(5) ∂Ω is of class Ck,1 with k ∈ N and s ≤ k + 1.

If f ∈ W s−2,q(Ω; Rm), χ ∈ W s−1,q(Ω) and g ∈ W s−1/q,q(∂Ω; Rm) then there exists
a solution (u, p) ∈ W s,q(Ω; Rm) × W s−1,q(Ω) of (1.1), (1.4) if and only if (5.2)
holds. The velocity u is unique and the pressure p is unique up to an additive
constant. If p satisfies (5.3) then

‖u‖W s,q(Ω) + ‖p‖W s−1,q(Ω) ≤ C
(
‖f‖W s−2,q(Ω) + ‖χ‖W s−1,q(Ω) + ‖g‖W s−1/q,q(∂Ω)

)

where C does not depend on f , χ and g.
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Proof. Lemma 5.1 forces that (5.2) is a necessary condition for the solvability of
the problem (1.1), (1.4).

Suppose first that β = 0. Put Xs,q := W s,q(Ω; Rm) × W s−1,q(Ω), Ys,q :=
W s−2,q(Ω; Rm) × W s−1,q(Ω) × W s−1/q,q(∂Ω; Rm). For µ ∈ R1 define

Bµ(u, p) := (−∆u + µu + ∇p,∇ · u, γΩu),

where γΩ is the trace operator. Then Bµ is a bounded linear operator from Xs,q to
Ys,q by [13, Theorem 1.4.4.6] and [13, Theorem 1.5.1.2]. Since Bλ(u, p)−B0(u, p) =
(λu, 0, 0), the operator Bλ − B0 : Xs,q → Ys,q is compact by Proposition 2.1. So,
Bλ : Xs,q → Ys,q is a Fredholm operator with index 0 if and only if B0 : Xs,q → Ys,q

is a Fredholm operator with index 0.
Denote by Ker Bλ the kernel of Bλ. If dim Ker Bλ ≤ 1 then Ker Bλ =

{(u, p);u ≡ 0, p is constant }. Suppose now that Bλ : Xs,q → Ys,q is a Fredholm op-
erator with index 0 and dim Ker Bλ ≤ 1. Then the co-dimension of the range of Bλ

is equal to 1. So, (5.2) is a necessary and sufficient condition for the solvability of the
problem (1.1), (1.2). Denote by Z the space of all p ∈ W s−1,q(Ω) satisfying (5.3),
by W the space of g ∈ W s−1/q,q(∂Ω; Rm) satisfying (5.2), X := W s,q(Ω; Rm) × Z
and Y := W s−2,q(Ω; Rm) × W s−1,q(Ω) × W . Then Bλ is an isomorphism X onto
Y . So, propositions of the theorem hold.

Let s = 1 and q = 2. If (u, p) ∈ W 1,2(Ω; Rm)×L2(Ω) is a solution of (1.1), (1.2)
with f ≡ 0, χ ≡ 0 and g ≡ 0, then u ≡ 0 and p is constant by [6, Theorem IV.8.1].
Moreover B0 : Xs,q → Ys,q is a Fredholm operator with index 0 by [6, Theorem
IV.5.2]. Thus Bλ : Xs,q → Ys,q is a Fredholm operator with index 0 and (5.2) is a
necessary and sufficient condition for the solvability of the problem (1.1), (1.2).

If ∂Ω is of class C1 and s = 1 then B0 : Xs,q → Ys,q is a Fredholm operator with
index 0 by [11, Theorem 2.1]. So, Bλ : Xs,q → Ys,q is a Fredholm operator with
index 0. If q ≥ 2 then Xs,q ↪→ X1,2, Ys,q ↪→ Y1,2 by Hölder’s inequality and Xs,q is
a dense subset of X1,2, Ys,q is a dense subset of Y1,2 by [1, Theorem 3.22]. If q ≤ 2
then X1,2 ↪→ Xs,q, Y1,2 ↪→ Ys,q by Hölder’s inequality and X1,2 is a dense subset of
Xs,q, Y1,2 is a dense subset of Ys,q by [1, Theorem 3.22]. So, [23, Lemma 1.8.4] gives
that the kernel of Bλ : Xs,q → Ys,q is the same as the kernel of Bλ : X1,2 → Y1,2.
Hence the dimension of the kernel of Bλ : Xs,q → Ys,q is equal to 1. We have proved
that the proposition of the Theorem is true.

Suppose now that s = 1 and 2 ≤ m ≤ 3. If m = 2 suppose that 4/3 < q < 4. If
m = 3 suppose that 3/2 < q < 3. Then B0 : X1,q → Y1,q is a Fredholm operator
with index 0 by Proposition 5.3. So, Bλ : X1,q → Y1,q is a Fredholm operator with
index 0. If q ≥ 2 then X1,q ↪→ X1,2, Y1,q ↪→ Y1,2 by Hölder’s inequality and X1,q is
a dense subset of X1,2, Y1,q is a dense subset of Y1,2 by [1, Theorem 3.22]. If q ≤ 2
then X1,2 ↪→ Xs,q, Y1,2 ↪→ Y1,q by Hölder’s inequality and X1,2 is a dense subset of
X1,q, Y1,2 is a dense subset of Y1,q by [1, Theorem 3.22]. So, [23, Lemma 1.8.4] gives
that the kernel of Bλ : X1,q → Y1,q is the same as the kernel of Bλ : X1,2 → Y1,2.
Hence the dimension of the kernel of Bλ : X1,q → Y1,q is equal to 1. We have
proved that the proposition of the Theorem is true.

Suppose now that ∂Ω is of class Ck,1 with k ∈ N and s = k+1. Then B0 : Xs,q →
Ys,q is a Fredholm operator with index 0 by [5, Theorem 4.8]. So, Bλ : Xs,q → Ys,q

is a Fredholm operator with index 0. Since the kernel of Bλ : Xs,q → Ys,q is a subset
of the kernel of Bλ : X1,q → Y1,q, the dimension of the kernel of Bλ : Xs,q → Ys,q

is at most 1. We have proved that the proposition of the Theorem is true.
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Suppose now that ∂Ω is of class Ck,1 with k ∈ N and k < s < k + 1. Define

B̃µ(u, p) := (−∆u + µu + ∇p,∇ · u +
∫

Ω

p dx, γΩu).

Since Bλ : Xk,q → Yk,q and Bλ : Xk+1,q → Yk+1,q are Fredholm operators with
index 0, and the operator B̃λ − Bλ is finite-dimensional, B̃λ : Xk,q → Yk,q and
B̃λ : Xk+1,q → Yk+1,q are Fredholm operators with index 0. Suppose now that
(u, p) ∈ Xk,q and B̃λ(u, p) = 0. According to Green’s formula

0 =
∫

Ω

(
∇ · u +

∫

Ω

p dx

)
dx =

∫

∂Ω

u·nΩ dσ+
∫

Ω

p dx·
∫

Ω

1 dx =
∫

Ω

p dx·
∫

Ω

1 dx.

Since
∫
Ω

p dx = 0 we have Bλ(u, p) = 0. We have proved that (u, p) = 0. Hence
B̃λ : Xk,q → Yk,q and B̃λ : Xk+1,q → Yk+1,q are isomorphisms. We now use the
real interpolation. Choose θ ∈ (0, 1) such that s = (1 − θ)k + θk. Then

(Xk,q, Xk+1,q)θ,q = Xs,q, (Yk,q, Yk+1,q)θ,q = Ys,q

by [7, Corollary 6.8] and [32, Lemma 41.3]. So, [3, Theorem 13.7.1] forces that B̃λ :
Xs,q → Ys,q is an isomorphism, too. (We can also use the complex interpolation and
[16, Proposition 2.4], [35, §1.11.3], [3, Theorem 13.7.1].) Therefore Bλ : Xs,q → Ys,q

is a Fredholm operator with index 0. Since the kernel of Bλ : Xs,q → Ys,q is a subset
of the kernel Bλ : Xk,q → Yk,q, the dimension of the kernel of Bλ : Xs,q → Ys,q is
equal to 1. We have proved that propositions of the Theorem hold.

Suppose now that β > 0. Define

Cλ(u, p) := (−∆u + λu + ∇p,∇ · u, γΩu + β

∫

Ω

u dx).

Since the operator Cλ −Bλ is finite-dimensional, the operator Cλ : Xs,q → Ys,q is a
Fredholm operator with index 0. Let now (u, p) ∈ Xs,q be such that Cλ(u, p) = 0.
Then

−∆u + λu + ∇p = 0, ∇ · u = 0 in Ω,

u = −β

∫

Ω

u dx on ∂Ω.

Thus there is a constant c such that u ≡ −β
∫
Ω

u dx, p ≡ c. Therefore

0 =
∫

Ω

(u + β

∫

Ω

u dx) dx =
∫

Ω

u dx(1 + β

∫

Ω

1 dx).

Since β > 0 we infer that
∫
Ω

u dx = 0. Hence Bλ(u, p) = 0. We have proved
that u ≡ 0. Since the dimension of the kernel of Cλ : Xs,q → Ys,q is equal to 1
and the the operator Cλ : Xs,q → Ys,q is a Fredholm operator with index 0, the
co-dimension of the range of Cλ : Xs,q → Ys,q is equal to 1. Therefore (5.2) is a
necessary and sufficient condition for the solvability of the problem (1.1), (1.4). So,
Cλ is an isomorphism X onto Y . �

6. Darcy-Forchheimer-Brinkman system

Lemma 6.1. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, k ∈ N
and 1 < q < ∞. Then there is a constant C such that the following holds: If
w ∈ W 1,q(Ω; Rk) then |w| ∈ W 1,q(Ω) and

‖ |w| ‖W 1,q(Ω) ≤ C‖w‖W 1,q(Ω).
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Proof. Fix w ∈ W 1,q(Ω; Rk). Put gi := |wi|. Then gi ∈ W 1,q(Ω) and ‖gi‖W 1,q(Ω) =
‖wi‖W 1,q(Ω) by [20, Theorem 6.17]. For ε ≥ 0 put gε := |(g1+ε, . . . , gk+ε)|. Remark
that g0 = |w|,

‖g0‖Lq(Ω) ≤ k‖w‖Lq(Ω)

and gε → g0 in Lq(Ω) as ε → 0+. If ε > 0 then

∂jg
ε(x) =

1
2gε(x)

m∑
i=1

(gi(x) + ε)∂jgi(x).

So,
|∂jg

ε| ≤ |∂jg1, . . . , ∂jgk)| ≤ |(∂jg1| + · · · + |∂jgk|.
Therefore

‖∂jg
ε‖Lq(Ω) ≤

k∑
i=1

‖∂jgi‖Lq(Ω).

If g0(x) > 0 then ∂jg
ε(x) → 1

2 |g
0(x)|−1

∑m
i=1 gi(x)∂jgi(x) as ε → 0+. If g0(x) = 0

then ∂jgi(x) = 0 by [20, Theorem 6.17] and thus ∂jg
ε(x) = 0. Put

f(x) :=
1

2g0(x)

m∑
i=1

gi(x)∂jgi(x) for g0(x) > 0,

f(x) := 0 for g0(x) = 0.

Then ∂jg
ε → f in Lq(Ω) as ε → 0+ by Lebesgue’s theorem. (See [4, Theorem 3.12].)

So, g1/n is a Cauchy sequence in W 1,q(Ω). Therefore there exists h ∈ W 1,q(Ω) such
that g1/n → h in W 1,q(Ω). Since g1/n → |w| in Lq(Ω), we infer that h = |w|. Since

‖g1/n‖W 1,q(Ω) ≤ k2‖w‖W 1,q(Ω),

we infer that
‖ |w| ‖W 1,q(Ω) ≤ k2‖w‖W 1,q(Ω).

�

Remark 6.2. Clearly ‖ |w|− |v| ||Lr(Ω) ≤ ‖w−v||Lr(Ω). But in general, it does not
exist a constant C such that

‖ |w| − |v| ||W 1,q(Ω) ≤ ‖w − v||W 1,q(Ω).

This shows the following easy example: Let I = (0, 1). Fix q ∈ (1,∞). Put
fα(t) := tα, gα(t) := tα − 1. Then f ′

α(t) = g′α(t) = αtα−1. So, fα, gα ∈ W 1,q(I) if
and only if α > (q − 1)/q. Since fα − gα ≡ 1, we have ‖fα − gα‖W 1,q(I) = 1. Since
|fα| − |gα| = 2tα − 1, we have ∂t(|fα(t)| − |gα(t)|) = 2αtα−1. So,

∫ 1

0

|∂t(|fα(t)| − |gα(t)|)|q dt = (2α)q

∫ 1

0

tqα−q dt =
(2α)q

αq − q + 1
.

If α ↘ (q − 1)/q then ‖ |fα| − |gα| ‖q
W 1,q(I) ≥

(2α)q

αq−q+1 → ∞.

Lemma 6.3. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, 1 ≤ s < 3
and max(1,m/3) < q < ∞. For u,v ∈ W s,q(Ω; Rm) define

A(u,v) := |u|v.

(1) Then there is a positive constant C such that the following holds: If u,v ∈
W s,q(Ω; Rm) then A(u,v) ∈ W s−2,q(Ω; Rm) and

‖A(u,v)‖W s−2,q(Ω) ≤ C‖u‖W s,q(Ω)‖v‖W s,q(Ω).
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(2) Suppose that s ≤ 2. If s < 2 and sq < m = 3 suppose moreover that
q ≥ 6/(3 + 2s). If s < 2 and m/(m − 2 + s) < q < m/s suppose moreover
that q ≥ m/(2 + s). Then

(6.1) ‖A(u,u)−A(v,v)‖W s−2,q(Ω) ≤ C‖u−v‖W s,q(Ω)

(
‖u‖W s,q(Ω) + ‖v‖W s,q(Ω)

)
.

Proof. According to Lemma 6.1 there exists a constant C1 such that

‖ |w| ‖W 1,q(Ω) ≤ C1‖w‖W s,q(Ω)

for all w ∈ W s,q(Ω; Rm). Since min(s, 1) > s − 2 and s + 1 − (s − 2) = 3 > m/q,
Lemma 7.1 forces that there is a constant C2 such that

‖fg‖W s−2,q(Ω) ≤ C2‖f‖W 1,q(Ω)‖g‖W s,q(Ω)

for all f ∈ W 1,q(Ω) and g ∈ W s,q(Ω). If u,v ∈ W s,q(Ω; Rm) then

‖A(u,v)‖W s−2,q(Ω) ≤ C2m‖ |u| ‖W 1,q(Ω)‖v‖W s,q(Ω) ≤ C1C2m‖u‖W s,q(Ω)‖v‖W s,q(Ω).

As Remark 6.2 shows, the proof of the second part of Lemma will be a bit
complicated. Since A(u,u) − A(v,v) = A(u,u − v) + (|u| − |v|)v, we have

(6.2) ‖A(u,u) − A(v,v)‖W s−2,q(Ω)

≤ C1C2m‖u − v‖W s,q(Ω)‖u‖W s,q(Ω) + ‖(|u| − |v|)v‖W s−2,q(Ω).

Suppose that s ≤ 2. Suppose first that sq ≥ m. According to Lemma 2.2 there is
a positive constant C3 such that

‖f‖L2q(Ω) ≤ C3‖f‖W s,q(Ω) ∀f ∈ W s,q(Ω).

If u,v ∈ W s,q(Ω; Rm) then

‖(|u| − |v|)v‖Lq(Ω) ≤ ‖|u − v|v‖Lq(Ω) ≤ ‖ |u − v| ‖L2q(Ω)‖v‖L2q(Ω)

≤ C2
3m2‖u − v‖W s,q(Ω)‖v‖W s,q(Ω)

by Hölder’s inequality. So,

‖(|u| − |v|)v‖W s−2,q(Ω) ≤ C2
3m2‖u − v‖W s,q(Ω)‖v‖W s,q(Ω).

This and (6.2) force that (6.1) holds with C ≥ C1C2m + C2
3m2.

Suppose now that s ≤ 2 and sq < m. Put r = mq/(m − sq). Then there is a
constant C4 such that

(6.3) ‖f‖Lr(Ω) ≤ C4‖f‖W s,q(Ω) for f ∈ W s,q(Ω)

by Lemma 2.2. We show that r/2 ≥ 1. Since q > m/3 we have for m ≥ 4 that
r/2 > m(m/3)/[2(m − m/3)] = m/4 ≥ 1. If m = 2 then r/2 = q/(2 − sq) ≥
q/(2 − 1) = q > 1. Suppose now that m = 3. Since q ≥ 6/(3 + 2s) we obtain

r

2
=

3q

2(3 − sq)
≥ 18/(3 + 2s)

6 − 12s/(3 + 2s)
=

3
(3 + 2s) − 2s

= 1.

Hölder’s inequality forces

‖(|u| − |v|)v‖Lr/2(Ω) ≤ ‖u − v‖Lr(Ω)‖v‖Lr(Ω).

Using (6.3)

(6.4) ‖(|u| − |v|)v‖Lr/2(Ω) ≤ C2
4m2‖u − v‖W s,q(Ω)‖v‖W s,q(Ω).

Suppose first that s = 2. Since m/3 < q we have r/2 = qm/(2m−4q) > qm/(2m−
4m/3) = q · 3/2 > q. So, there is a constant C5 such that

(6.5) ‖f‖Lq(Ω) ≤ C5‖f‖Lr/2(Ω) ∀f ∈ Lr/2(Ω).
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According to (6.4) we obtain

‖(|u| − |v|)v‖W s−2,q(Ω) = ‖(|u| − |v|)v‖Lq(Ω) ≤ C5‖(|u| − |v|)v‖Lr/2(Ω)

≤ C5C
2
4m2‖u − v‖W s,q(Ω)‖v‖W s,q(Ω).

Therefore (6.2) gives that (6.1) holds with C ≥ C1C2m + C5C4m
2.

Let now s < 2 and sq < m. If m = 2 then r/2 ≥ q as we have proved. So, there
is a constant C5 such that (6.5) holds. Therefore there is a constant C6 such that

(6.6) ‖f‖W s−2,q(Ω) ≤ C6‖f‖Lr/2(Ω) ∀f ∈ Lr/2(Ω).

Suppose now that m ≥ 3. Put q′ = q/(q − 1) and t = (r/2)/(r/2 − 1). Suppose
first that (2 − s)q′ ≥ m. According to Lemma 2.2 there is a constant C7 such that

‖g‖Lt(Ω) ≤ C7‖g‖W 2−s,q′ (Ω) ∀g ∈ W 2−s,q′
(Ω).

If f ∈ Lr/2(Ω) and g ∈ W 2−s,q′
(Ω) then Hölder’s inequality yields∣∣∣∣

∫

Ω

fg dx

∣∣∣∣ ≤ ‖f‖Lr/2(Ω)‖g‖Lt(Ω) ≤ ‖f‖Lr/2(Ω)C7‖g‖W 2−s,q′ (Ω).

Thus f ∈ W s−2,q(Ω) and (6.6) holds with C6 ≥ C7. Suppose now that (2−s)q′ < m.
Put τ = mq′/[m − (2 − s)q′]. According to Lemma 2.2 there is a constant C8 such
that

(6.7) ‖g‖Lτ (Ω) ≤ C8‖g‖W 2−s,q′ (Ω) ∀g ∈ W 2−s,q′
(Ω).

Clearly,

t =
r/2

r/2 − 1
=

(mq)/(2m − 2sq)
(mq)/(2m − 2sq) − 1

=
mq

mq − 2m + 2sq
,

τ =
mq′

m − (2 − s)q′
=

mq/(q − 1)
m − (2 − s)q/(q − 1)

=
mq

mq − m − (2 − s)q
.

Thus τ ≥ t if and only if m + (2 − s)q ≥ 2m − 2sq, i.e. if (2 + s)q ≥ m. Since
q′ < m/(2 − s) we have

q =
q′

q′ − 1
>

m/(2 − s)
m/(2 − s) − 1

=
m

m − 2 + s
.

So, q ≥ m/(2 + s) by assumptions. Therefore τ ≥ t. Thus there is a constant C9

such that
‖g‖Lt(Ω) ≤ C9‖g‖Lτ (Ω) ∀g ∈ Lτ (Ω).

If f ∈ Lr/2(Ω) and g ∈ W 2−s,q′
(Ω) then Hölder’s inequality and (6.7) yield∣∣∣∣

∫

Ω

fg dx

∣∣∣∣ ≤ ‖f‖Lr/2(Ω)‖g‖Lt(Ω) ≤ C9‖f‖Lr/2(Ω)‖g‖Lτ (Ω)

≤ C8C9‖f‖Lr/2(Ω)‖g‖W 2−s,q′ (Ω).

Thus f ∈ W s−2,q(Ω) and (6.6) holds with C6 ≥ C8C9. We have proved (6.6) for
s < 2. Using (6.2), (6.6) and (6.4)

‖A(u,u) − A(v,v)‖W s−2,q(Ω) ≤ C1C2m‖u − v‖W s,q(Ω)‖u‖W s,q(Ω)

+‖(|u| − |v|)v‖W s−2,q(Ω) ≤ C1C2m‖u − v‖W s,q(Ω)‖u‖W s,q(Ω)

+C6‖(|u| − |v|)v‖Lr/2(Ω) ≤ C1C2m‖u − v‖W s,q(Ω)‖u‖W s,q(Ω)

+C6C
2
4m2‖u − v‖W s,q(Ω)‖v‖W s,q(Ω)

≤ (C1C2m + +C6C
2
4m2)‖u − v‖W s,q(Ω)

(
‖u‖W s,q(Ω) + ‖v‖W s,q(Ω)

)
.
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�

Lemma 6.4. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, 1 ≤ s < ∞
and 1 < q < ∞. For u,v ∈ W s,q(Ω; Rm) define

B(u,v) := (u · ∇)v.

Suppose that one of the following conditions is satisfied:
(1) 1 < s and q > m/(s + 1).
(2) s = 1, q > 2m/(m + 1). If m/(m − 1) < q < m suppose that q ≥ m/2.

Then there exists a positive constant C such that the following holds: If u,v ∈
W s,q(Ω; Rm) then B(u,v) ∈ W s−2,q(Ω; Rm) and

(6.8) ‖B(u,v)‖W s−2,q(Ω) ≤ C‖u‖W s,q(Ω)‖v‖W s,q(Ω),

‖B(u,u) − B(v,v)‖W s−2,q(Ω) ≤ C‖u − v‖W s,q(Ω)

(
‖u‖W s,q(Ω) + ‖v‖W s,q(Ω)

)
.

Proof. Suppose first that s > 1 and q > m/(s + 1). Clearly, min(s, s − 1) > s − 2.
Moreover, s + (s − 1) − (s − 2) = s + 1 > m/q. According to Proposition 7.1 there
is a constant C such that (6.8) holds.

Suppose now that s = 1. Put q′ = q/(q−1). Suppose first that q ≥ m. According
to Lemma 2.2 there exist r ∈ (q′,∞) and a constant C1 such that

(6.9) ‖g‖Lr(Ω) ≤ C1‖g‖W 1,q′ (Ω) ∀g ∈ W 1,q′
(Ω).

Since 1/q + 1/q′ = 1 we have 1/q + 1/r < 1. Thus there exists t ∈ (1,∞) such that
1/q + 1/r + 1/t = 1. According to Lemma 2.2 there is a constant C2 such that

(6.10) ‖f‖Lt(Ω) ≤ C2‖f‖W 1,q(Ω) ∀f ∈ W 1,q(Ω).

If h ∈ Lq(Ω), g ∈ W 1,q′
(Ω) and f ∈ W 1,q(Ω) then Hölder’s inequality forces∣∣∣∣

∫

Ω

fhg dx

∣∣∣∣ ≤ ‖f‖Lt(Ω)‖h‖Lq(Ω)‖g‖Lr(Ω) ≤ C1C2‖f‖W 1,q(Ω)‖h‖Lq(Ω)‖g‖W 1,q′ (Ω).

So, fh ∈ W−1,q(Ω) and

(6.11) ‖fh‖W−1,q(Ω) ≤ C1C2‖f‖W 1,q(Ω)‖h‖Lq(Ω).

If u,v ∈ W 1,q(Ω; Rm) then B(u,v) ∈ W−1,q(Ω; Rm) and (6.8) holds with C ≥
C1C2m

2.
Suppose now that s = 1 and q < m. Put t := mq/(m− q). According to Lemma

2.2 there exists a constant C2 such that (6.10) hods. Since q > 2m/(m+1) we have

1
q

+
1
t

=
1
q

+
m − q

mq
<

m + 1
2m

+
m − 2m/(m + 1)

2m2/(m + 1)
=

m + 1
2m

+
m + 1 − 2

2m
= 1.

Therefore there is r ∈ (1,∞) such that 1/q + 1/t + 1/r = 1. Hölder’s inequality
forces

(6.12)
∣∣∣∣
∫

Ω

fhg dx

∣∣∣∣ ≤ ‖f‖Lt(Ω)‖h‖Lq(Ω)‖g‖Lr(Ω).

Suppose first that q′ = q/(q − 1) ≥ m. According to Lemma 2.2 there exists a
constant C1 such that (6.9) holds. Suppose now that q′ < m. Then q = q′/(q′−1) >
m/(m − 1). So, q ≥ m/2 by assumption. Thus

1
r
− m − q′

mq′
= 1 − 1

q
− 1

t
− m − q/(q − 1)

mq/(q − 1)
= 1 − 1

q
− m − q

mq
− mq − m − q

mq
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=
mq − m − m + q − mq + m + q

mq
=

2q − m

mq
≥ 0.

Hence r ≤ mq′/(m − q′). According to Lemma 2.2 there exists a constant C1 such
that (6.9) holds. According to (6.12), (6.9) and (6.10)∣∣∣∣

∫

Ω

fgh dx

∣∣∣∣ ≤ ‖f‖Lt(Ω)‖h‖Lq(Ω)‖g‖Lr(Ω) ≤ C1C2‖f‖W 1,q(Ω)‖h‖Lq(Ω)‖g‖W 1,q′ (Ω).

So, if f ∈ W 1,q(Ω) and h ∈ Lq(Ω), then fh ∈ W−1,q(Ω) and (6.11) holds. If u,v ∈
W 1,q(Ω; Rm) then B(u,v) ∈ W−1,q(Ω; Rm) and (6.8) holds with C ≥ C1C2m

2.
Clearly

‖B(u,u) − B(v,v)‖W s−2,q(Ω) = ‖B(u − v,u) + B(v,u − v)‖W s−2,q(Ω) ≤
‖B(u − v,u)‖W s−2,q(Ω) + ‖B(v,u − v)‖W s−2,q(Ω) ≤

C‖u − v‖W s,q(Ω)‖u‖W s,q(Ω) + C‖v‖W s,q(Ω)‖u − v‖W s,q(Ω).

�

Theorem 6.5. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, 1 ≤
s < ∞ and 1 < q < ∞. Suppose that one of the following conditions is satisfied:

(1) m ≤ 4, s = 1 and q = 2.
(2) Ω ⊂ R2, s = 1 and 4/3 < q < 4.
(3) Ω ⊂ R3, s = 1 and 3/2 < q < 3.
(4) ∂Ω is of class C1, s = 1 and q > 2m/(m + 1). If m/(m − 1) < q < m then

q ≥ m/2.
(5) ∂Ω is of class Ck,1 with k ∈ N , 1 < s ≤ k + 1 and q > m/(s + 1).

Let 0 ≤ λ, a, b, β < ∞. If s > 2 or q ≤ m/3 suppose that a = 0. If m = 3, s = 1
and q < 6/5 suppose that a = 0. Then there exist δ, ε, C ∈ (0,∞) such that the
following holds: If f ∈ W s−2,q(Ω; Rm), χ ∈ W s−1,q(Ω) and g ∈ W s−1/q,q(∂Ω; Rm)
satisfy

(6.13) ‖f‖W s−2,q(Ω) + ‖χ‖W s−1,q(Ω) + ‖g‖W s−1/q,q(∂Ω) < δ

then there exists a solution (u, p) ∈ W s,q(Ω; Rm)×W s−1,q(Ω) of (1.3), (1.4) if and
only if (5.2) holds. Moreover, there is a unique solution satisfying

(6.14) ‖u‖W s,q(Ω) < ε

and (5.3). If (u, p) is a solution of (1.3), (1.4) satisfying (6.14) and (5.3) then

‖u‖W s,q(Ω) + ‖p‖W s−1,q(Ω) ≤ C
(
‖f‖W s−2,q(Ω) + ‖χ‖W s−1,q(Ω) + ‖g‖W s−1/q,q(∂Ω)

)
.

Proof. If (u, p) ∈ W s,q(Ω; Rm) × W s−1,q(Ω) is a solution of (1.3), (1.4), then (5.2)
holds by Lemma 5.1.

Define
L(u) := a|u|u + b(u · ∇)u.

According to Lemma 6.3 and Lemma 6.4 there is a constant C1 such that

‖Lu‖W s−2,q(Ω) ≤ C1‖u‖2
W s,q(Ω),

‖Lu − Lv‖W s−2,q(Ω) ≤ C1‖u − v‖W s,q(Ω)

(
‖u‖W s,q(Ω) + ‖v‖W s,q(Ω)

)

for all u,v ∈ W s,q(Ω; Rm). (If m ≤ 4, s = 1 and q = 2 then 2m/(m + 1) < 2 = q
and m/2 ≤ 2 = q. If m = 2 and 4/3 < q < 4 then 2m/(m + 1) = 4/3 < q and
m/(m − 1) = 2 = m. If m = 3, s = 1 and 3/2 < q < 3 then 2m/(m + 1) =
6/4 = 3/2 < q and m/2 = 3/2 < q. If m = 3, 1 < s < 2 and q > m/(s + 1)
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then q > 3/(s + 1) = 6/(2s + 2) > 6/(3 + 2s). If m ≤ 3 and s = 1 then q >
1 ≥ m/(2 + s). If m = 4, s = 1 and q = 2 then m/(2 + s) = 4/3 < 2 = q. If
s = 1 and m/(m − 2 + s) < q < m/s, then m/(m − 1) < q < m and therefore
q ≥ m/2 > m/(2 + s).)

According to Theorem 5.4 there is a positive constant C2 such that the following
holds: If f ∈ W s−2,q(Ω; Rm), χ ∈ W s−1,q(Ω) and g ∈ W s−1/q,q(∂Ω; Rm) satisfy
(5.2) then there is a unique solution (u, p) ∈ W s,q(Ω; Rm) × W s−1,q(Ω) of (1.1),
(1.4) satisfying (5.3). Moreover,

‖u‖W s,q(Ω) + ‖p‖W s−1,q(Ω) ≤ C2

(
‖f‖W s−2,q(Ω) + ‖χ‖W s−1,q(Ω) + ‖g‖W s−1/q,q(∂Ω)

)
.

Put
ε :=

1
4(C1 + 1)(C2 + 1)

, δ :=
ε

2(C2 + 1)
.

If (u, p) ∈ W s,q(Ω; Rm) × W s−1,q(Ω) is a solution of (1.3), (1.4) satisfying (6.14)
and (5.3), and (ũ, p̃) ∈ W s,q(Ω; Rm) × W s−1,q(Ω) is a solution of

−∆ũ + λũ + a|ũ|ũ + b(ũ · ∇)ũ + ∇p̃ = f̃ , ∇ · ũ = χ̃ in Ω,

ũ + β

∫

Ω

ũ dx = g̃ on ∂Ω,

∫

Ω

p̃ dx = 0

and ‖ũ‖W s,q(Ω) < ε, then

‖u − ũ‖W s,q(Ω) + ‖p − p̃‖W s−1,q(Ω) ≤ C2(‖f − f̃‖W s−2,q(Ω) + ‖χ − χ̃‖W s−1,q(Ω)

+‖g − g̃‖W s−1/q,q(∂Ω) + ‖Lu − Lũ‖W s−2,q(Ω)) ≤ C2(‖f − f̃‖W s−2,q(Ω)

+‖χ − χ̃‖W s−1,q(Ω) + ‖g − g̃‖W s−1/q,q(∂Ω) + C12ε‖u − ũ‖W s,q(Ω))

≤ C2(‖f − f̃‖W s−2,q(Ω) +‖χ− χ̃‖W s−1,q(Ω) +‖g− g̃‖W s−1/q,q(∂Ω))+
1
2
‖u− ũ‖W s,q(Ω).

Thus
‖u − ũ‖W s,q(Ω) + ‖p − p̃‖W s−1,q(Ω)

≤ 2C2(‖f − f̃‖W s−2,q(Ω) + ‖χ − χ̃‖W s−1,q(Ω) + ‖g − g̃‖W s−1/q,q(∂Ω)).
This gives the uniqueness of a solution of (1.3), (1.4) satisfying (6.14) and (5.3).
For ũ ≡ 0, p̃ ≡ 0, f̃ ≡ 0, χ̃ ≡ 0, g̃ ≡ 0 we have

‖u‖W s,q(Ω) + ‖p‖W s−1,q(Ω) ≤ 2C2

(
‖f‖W s−2,q(Ω) + ‖χ‖W s−1,q(Ω) + ‖g‖W s−1/q,q(∂Ω)

)
.

Denote E := {u ∈ W s,q(Ω; Rm); ‖u‖W s,q(Ω) ≤ ε}. Choose f ∈ W s−2,q(Ω; Rm),
χ ∈ W s−1,q(Ω) and g ∈ W s−1/q,q(∂Ω; Rm) satisfying (6.13) and (5.2). For a fixed
v ∈ E there exists a unique solution (uv, pv) ∈ W s,q(Ω; Rm) × W s−1,q(Ω) of

−∆uv + λuv + ∇pv = f − L(v), ∇ · uv = χ in Ω,

uv + β

∫

Ω

uv dx = g on ∂Ω,

∫

Ω

pv dx = 0.

Clearly,

‖uv‖W s,q(Ω) ≤ C2

(
‖f‖W s−2,q(Ω) + ‖Lv‖W s−2,q(Ω) + ‖χ‖W s−1,q(Ω) + ‖g‖W s−1/q,q(∂Ω)

)

< C2δ + C2C1‖v‖2
W s,q(Ω) =

C2ε

2(C2 + 1)
+ C2C1ε

1
4(C1 + 1)(C2 + 1)

≤ ε.

So uv ∈ E. If v,w ∈ E then

‖uv − uw‖W s,q(Ω) ≤ C2‖Lv − Lw‖W s−2,q(Ω)

≤ C2C1‖w − v‖W s,q(Ω)

(
‖w‖W s,q(Ω) + ‖v‖W s,q(Ω)

)
≤ 2C2C1ε‖w − v‖W s,q(Ω).
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But 2C2C1ε < 1. Therefore Banach’s fixed point theorem forces that there exists
v ∈ E such that uv = v. (See [8, Satz 1/24].) For such v the pair (uv, pv) is a
solution of (1.3), (1.4). �

7. Appendix

Proposition 7.1. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Let
0 < s(1), s(2) < ∞, min(s(1), s(2)) ≥ s > −∞ and 1 < p < ∞. Suppose that
s(1) + s(2) − s > m/p. Then there exists a positive constant C such that

‖fg‖W s,p(Ω) ≤ C‖f‖W s(1),p(Ω)‖g‖W s(2),p(Ω)

for all f ∈ W s(1),p(Ω), g ∈ W s(2),p(Ω).

(See [24, Lemma 4.3].)
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