THE DIRICHLET PROBLEM FOR THE BRINKMAN SYSTEM IN SOBOLEV SPACES

DAGMAR MEDKOVÁ ${ }^{\dagger}$

Abstract

The Dirichlet problem for the Brinkman system and the Darcy-Forchheimer-Brinkman system are studied in $W^{s, q}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ for bounded domains $\Omega \subset \mathbb{R}^{m}$ with Lipschitz boundary.

1. Introduction

The paper is devoted to the Dirichlet problem for the Brinkman system

$$
\begin{equation*}
-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=\mathbf{f}, \nabla \cdot \mathbf{u}=\chi \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{u}=\mathbf{g} \quad \text { on } \partial \Omega \tag{1.2}
\end{equation*}
$$

and for the Darcy-Forchheimer-Brinkman system

$$
\begin{equation*}
-\Delta \mathbf{u}+\lambda \mathbf{u}+a|\mathbf{u}| \mathbf{u}+b(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=\mathbf{f}, \nabla \cdot \mathbf{u}=\chi \quad \text { in } \Omega . \tag{1.3}
\end{equation*}
$$

Instead of the Dirichlet problem we shall study a bit more general nonlocal boundary condition

$$
\begin{equation*}
\mathbf{u}+\beta \int_{\Omega} \mathbf{u} \mathrm{d} x=\mathbf{g} \quad \text { on } \partial \Omega . \tag{1.4}
\end{equation*}
$$

The problem is studied in Sobolev spaces $W^{s, q}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ in bounded domains with Lipschitz boundary. Here $1 \leq s<\infty$ and $1<q<\infty$. The boundary might be disconnected.

The Dirichlet problem for the Brinkman system in Sobolev spaces was studied in the following papers: [17] proves the existence of a solution in $H^{s+1 / 2}\left(\Omega ; \mathbb{R}^{m}\right) \times$ $H^{s-1 / 2}(\Omega)$ for $0<s<1$ and a bounded domain $\Omega \subset \mathrm{R}^{m}$ with connected Lipschitz boundary. The same result was proved in [29] for a bounded domain $\Omega \subset \mathrm{R}^{m}$ with Lipschitz boundary formed by two components. [12] is devoted to solutions in $W^{2, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{1, q}(\Omega)$ for a bounded domain with smooth boundary and $1<$ $q<\infty$. The same problem is studied in [9] and [10] for a bounded domain $\Omega \subset \mathbb{R}^{m}$ with boundary of class $\mathcal{C}^{1,1}$. Y. Shibata studies this problem in [31] for domains with boundary formed by two components.

The papers [14] and [15] studied the Dirichlet problem for the homogeneous Darcy-Forchheimer-Brinkman system in $W^{s, 2}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1,2}(\Omega)$, where $1 \leq s<$ $3 / 2, \Omega \subset \mathbb{R}^{m}$ is a bounded domain with connected Lipschitz boundary and $m=2$ or $m=3$. The same problem was studied in [29] for domains which boundary is

[^0][^1]formed by two components. They supposed that a and b are positive constants, $\mathbf{f} \equiv 0, \chi \equiv 0$ and
$$
\int_{S} \mathbf{g} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=0
$$
for each component S of $\partial \Omega$.
In this paper we study the Brinkman system (1.1) in bounded domains $\Omega \subset \mathbb{R}^{m}$ with Lipschitz boundary. Instead of the Dirichlet condition (1.2) we have a bit more general nonlocal boundary condition (1.4). We find a necessary and sufficient condition for the existence of a solution in $W^{s, q}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ with $1 \leq s<$ $\infty, 1<q<\infty$ in the following cases:
(1) $s=1$ and $q=2$.
(2) $\Omega \subset \mathbb{R}^{2}, s=1$ and $4 / 3<q<4$.
(3) $\Omega \subset \mathbb{R}^{3}, s=1$ and $3 / 2<q<3$.
(4) $\partial \Omega$ is of class \mathcal{C}^{1} and $s=1$.
(5) $\partial \Omega$ is of class $\mathcal{C}^{k, 1}$ with $k \in N$ and $s \leq k+1$.

We show that the velocity \mathbf{u} is unique and the pressure p is unique up to an additive constant. Then we get results for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman system using the fixed point theorem.

2. Function spaces

First we remember definitions of several function spaces.
Let $\Omega \subset \mathbb{R}^{m}$ be an open set. We denote by $\mathcal{C}_{c}^{\infty}(\Omega)$ the space of infinitely differentiable functions with compact support in Ω. If $k \in \mathbb{N}_{0}, 1<q<\infty$ we define the Sobolev space $W^{k, q}(\Omega):=\left\{f \in L^{q}(\Omega) ; \partial^{\alpha} f \in L^{q}(\Omega)\right.$ for $\left.|\alpha| \leq m\right\}$ endowed with the norm

$$
\|u\|_{W^{k, q}(\Omega)}=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{L^{q}(\Omega)} .
$$

(Clearly $W^{0, q}(\Omega)=L^{q}(\Omega)$.) If $s=k+\lambda, 0<\lambda<1$ and $1<q<\infty$ denote $W^{s, q}(\Omega):=\left\{u \in W^{k, q}(\Omega) ;\|u\|_{W^{s, q}(\Omega)}<\infty\right\}$ where

$$
\|u\|_{W^{s, q}(\Omega)}=\left[\|u\|_{W^{k, q}(\Omega)}^{q}+\sum_{|\alpha|=k_{\Omega \times \Omega}} \int \frac{\left|\partial^{\alpha} u(x)-\partial^{\alpha} u(y)\right|^{q}}{|x-y|^{m+q \lambda}} \mathrm{~d}(x, y)\right]^{1 / q}
$$

Denote by $\stackrel{W}{W}^{k, p}(\Omega)$ the closure of $\mathcal{C}_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$.
If X is a Banach space we denote by X^{\prime} its dual space. If $0<s<\infty$, denote $W^{-s, q}(\Omega):=\left[\dot{W}^{s, q^{\prime}}(\Omega)\right]^{\prime}$, where $q^{\prime}=q /(q-1)$.

If $\Omega \subset V \subset \bar{\Omega}$ then we denote by $L_{\text {loc }}^{q}(V)$ the space of all measurable functions u on Ω such that $u \in L^{q}(\omega)$ for each bounded open set ω with $\bar{\omega} \subset V$.

If $\Omega \subset \mathbb{R}^{m}$ is an open set with compact Lipschitz boundary, $0<s<1,1<q<$ ∞, denote $W^{s, q}(\partial \Omega)=\left\{u \in L^{q}(\partial \Omega) ;\|u\|_{W^{s, q}(\partial \Omega)}<\infty\right\}$ where

$$
\|u\|_{W^{s, q}(\partial \Omega)}=\left[\|u\|_{L^{q}(\partial \Omega)}^{q}+\int_{\partial \Omega \times \partial \Omega} \frac{|u(x)-u(y)|^{q}}{|x-y|^{m-1+q s}} \mathrm{~d}(x, y)\right]^{1 / q}
$$

Further, $W^{-s, q}(\partial \Omega):=\left[W^{s, q^{\prime}}(\partial \Omega)\right]^{\prime}$, where $q^{\prime}=q /(q-1)$.
We denote $\mathcal{C}_{c}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right):=\left\{\left(v_{1}, \ldots, v_{m}\right) ; v_{j} \in \mathcal{C}_{c}^{\infty}(\Omega)\right\}$. Similarly for other spaces of functions.

We say that $\Omega \subset \mathbb{R}^{m}$ is a domain if it is an open connected set.
Proposition 2.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded open set with Lipchitz boundary, $-\infty<t<s<\infty$ and $1<q<\infty$. Then the identity I is a compact mapping from $W^{s, q}(\Omega)$ to $W^{t, q}(\Omega)$.
Proof. Suppose first that $0 \leq t$. Choose r and τ such that $t<\tau<r<s$ and τ, r are not integer. Then $I: W^{s, q}(\Omega) \rightarrow W^{r, q}(\Omega), I: W^{\tau, q}(\Omega) \rightarrow W^{t, q}(\Omega)$ continuously by [28, Chap. $2, \S 5.4$, Lemma 5.4]. It is show in [37, Theorem 1.97] for Besov spaces that $I: B_{r}^{q, q}(\Omega) \rightarrow B_{\tau}^{q, q}(\Omega)$ compactly. But $W^{r, q}(\Omega)=B_{r}^{q, q}(\Omega)$, $W^{\tau, q}(\Omega)=B_{\tau}^{q, q}(\Omega)$ by $\left[7\right.$, Theorem 6.7]. So, $I: W^{s, q}(\Omega) \rightarrow W^{t, q}(\Omega)$ compactly.

Let now $s \leq 0$. Put $q^{\prime}=q /(q-1)$. We have proved that $W^{-t, q^{\prime}}(\Omega) \hookrightarrow W^{-s, q^{\prime}}(\Omega)$ compactly. So, $\left[W^{-s, q^{\prime}}(\Omega)\right]^{\prime} \hookrightarrow\left[W^{-t, q^{\prime}}(\Omega)\right]^{\prime}$ compactly by $[27, \S 15$, Theorem 4]. Suppose now that f_{n} is a bounded sequence in $W^{s, q}(\Omega)$. According to [39, Chapter IV, $\S 1$, Theorem $]$ there exist $\tilde{f}_{n} \in\left[W^{-s, q^{\prime}}(\Omega)\right]^{\prime}$ such that \tilde{f}_{n} are extensions of f_{n} and $\left\|\tilde{f}_{n}\right\|=\left\|f_{n}\right\|$. Since $\left[W^{-s, q^{\prime}}(\Omega)\right]^{\prime} \hookrightarrow\left[W^{-t, q^{\prime}}(\Omega)\right]^{\prime}$ compactly, there exists a sub-sequence $\tilde{f}_{n(k)}$ and $\tilde{f} \in\left[W^{-t, q^{\prime}}(\Omega)\right]^{\prime}$ such that $\tilde{f}_{n(k)} \rightarrow \tilde{f}$ in $\left[W^{-t, q^{\prime}}(\Omega)\right]^{\prime}$ as $k \rightarrow \infty$. So, $\tilde{f}_{n(k)} \rightarrow \tilde{f}$ in $W^{t, q}(\Omega)$ as $k \rightarrow \infty$. Therefore, the identity I is a compact mapping from $W^{s, q}(\Omega)$ to $W^{t, q}(\Omega)$.

If $t<0$ and $0 \leq s$, then $I: W^{s, q}(\Omega) \rightarrow L^{q}(\Omega)$ continuously and $I: L^{q}(\Omega) \rightarrow$ $W^{t, q}(\Omega)$ compactly. If $t \leq 0$ and $0<s$, then $I: W^{s, q}(\Omega) \rightarrow L^{q}(\Omega)$ compactly and $I: L^{q}(\Omega) \rightarrow W^{t, q}(\Omega)$ continuously. In both cases $I: W^{s, q}(\Omega) \rightarrow W^{t, q}(\Omega)$ compactly.

Lemma 2.2. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1<p, q<$ ∞ and $0<s<\infty$. If $s p<m$ suppose moreover that $q \leq m p /(m-s p)$. Then $W^{s, p}(\Omega) \hookrightarrow L^{q}(\Omega)$.
Proof. Suppose first that $s \in \mathbb{N}$. Then $W^{s, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ by [19, Theorem 5.7.7].
Let now $s \notin \mathbb{N}$. Then $W^{s, p}(\Omega)$ is equal to the Besov space $B_{s}^{p, p}(\Omega)$ by ($[7$, Theorem 6.7]). If $s p>m$ then $W^{s, p}(\Omega)=B_{s}^{p, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ by [1, Theorem 7.34]. If $s p \leq m$ then $W^{s, p}(\Omega)=B_{s}^{p, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ by [35, $\S 46.2$, Theorem].

3. Volume potential

Let $\lambda \geq 0$. Then there exists a unique fundamental solution $E^{\lambda}=\left(E_{i j}^{\lambda}\right), Q^{\lambda}=$ $\left(Q_{j}^{\lambda}\right)$ of the Brinkman system

$$
\begin{equation*}
-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=0, \quad \nabla \mathbf{u}=0 \tag{3.1}
\end{equation*}
$$

in \mathbb{R}^{m} such that $E^{\lambda}(x)=o(|x|), Q^{\lambda}(x)=o(|x|)$ as $|x| \rightarrow \infty$. (Here $\Delta f=\partial_{1}^{2} f+$ $\partial_{2}^{2} f+\cdots+\partial_{m}^{2} f$ is the Laplace operator of f.) Remember that for $i, j \in\{1, \ldots, m\}$ we have

$$
\begin{gathered}
-\Delta E_{i j}^{\lambda}+\lambda E_{i j}^{\lambda}+\partial_{i} Q_{j}^{\lambda}=\delta_{i j} \delta_{0}, \quad \partial_{1} E_{1 j}^{\lambda}+\ldots \partial_{m} E_{m j}^{\lambda}=0 \\
-\Delta E_{i, m+1}^{\lambda}+\lambda E_{i, m+1}^{\lambda}+\partial_{i} Q_{m+1}^{\lambda}=0, \quad \partial_{1} E_{1, m+1}^{\lambda}+\ldots \partial_{m} E_{m, m+1}^{\lambda}=\delta_{0}
\end{gathered}
$$

Clearly,

$$
E^{\lambda}(-x)=E^{\lambda}(x), \quad Q^{\lambda}(-x)=-Q^{\lambda}(x) .
$$

If $j \in\{1, \ldots, m\}$ then

$$
Q_{j}^{\lambda}(x)=E_{j, m+1}^{\lambda}(x)=\frac{1}{\sigma_{m}} \frac{x_{j}}{|x|^{m}},
$$

$$
Q_{m+1}^{\lambda}= \begin{cases}\delta_{0}(x)+\left(\lambda / \sigma_{m}\right) \ln |x|^{-1}, & m=2 \\ \delta_{0}(x)+\left(\lambda / \sigma_{m}\right)(m-2)^{-1}|x|^{2-m}, & m>2\end{cases}
$$

where σ_{m} is the area of the unit sphere in \mathbb{R}^{m}. (See [38, p. 60].) The expressions of E^{λ} can be found in the book [38, Chapter 2]. We omit them for the sake of brevity.

For $\lambda=0$ we obtain the fundamental solution of the Stokes system. If $i, j \in$ $\{1, \ldots, m\}$, the components of E^{0} are given by

$$
\begin{gather*}
E_{i j}^{0}(x)=\frac{1}{2 \sigma_{m}}\left\{\frac{\delta_{i j}}{(m-2)|x|^{m-2}}+\frac{x_{i} x_{j}}{|x|^{m}}\right\}, \quad m \geq 3 \tag{3.2}\\
E_{i j}^{0}(x)=\frac{1}{4 \pi}\left\{\delta_{i j} \ln \frac{1}{|x|}+\frac{x_{j} x_{k}}{|x|^{2}}\right\}, \quad m=2, \tag{3.3}
\end{gather*}
$$

(see, e.g., [38, p. 16]).
If $i, j \leq m$ then

$$
\begin{aligned}
E_{i j}^{\lambda} & =E_{j i}^{\lambda}, \\
\left|E_{i j}^{\lambda}(x)-E_{i j}^{0}(x)\right| & =O(1) \quad \text { as }|x| \rightarrow 0
\end{aligned}
$$

by $[38$, p. 66] and

$$
\left|\nabla E_{i j}^{\lambda}(x)-\nabla E_{i j}^{0}(x)\right|=O\left(|x|^{2-m}\right) \quad \text { as }|x| \rightarrow 0
$$

by [21, Lemma 4.1].
If $i, j \leq m$ and $\lambda>0$, then

$$
\partial^{\alpha} E_{i j}^{\lambda}(x)=O\left(|x|^{-m-|\alpha|}\right), \quad|x| \rightarrow \infty
$$

for each muliindex α. (See [18, Lemma 3.1].)
If $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right)$ where f_{1}, \ldots, f_{m} and g are distributions in \mathbb{R}^{m} with compact support and $\lambda \geq 0$, then

$$
\mathbf{v}:=E^{\lambda} *\binom{\mathbf{f}}{g}, \quad p:=Q^{\lambda} *\binom{\mathbf{f}}{g}
$$

are well defined and

$$
-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p=\mathbf{f}, \quad \nabla \cdot \mathbf{v}=g \quad \text { in } \mathbb{R}^{m}
$$

We denote $Q(x)=\left(Q_{1}^{0}(x), \ldots, Q_{m}^{0}(x)\right)=\left(Q_{1}^{\lambda}(x), \ldots, Q_{m}^{\lambda}(x)\right)$. By \tilde{E}^{λ} we denote the matrix of the type $m \times m$, where $\tilde{E}_{i j}^{\lambda}(x)=E_{i j}^{\lambda}(x)$ for $i, j \leq m$.
Proposition 3.1. Let $\varphi, \psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}\right), 1<q<\infty$ and $s \in \mathbb{R}^{1}$. Then there exists a constant C such that if $\mathbf{f} \in W^{s, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ then $\varphi[Q *(\psi \mathbf{f})] \in W^{s+1, q}\left(\mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|\varphi[Q *(\psi \mathbf{f})]\|_{W^{s+1, q}\left(\mathbb{R}^{m}\right)} \leq C\|\mathbf{f}\|_{W^{s, q}\left(\mathbb{R}^{m}\right)} \tag{3.4}
\end{equation*}
$$

Proof. Let h_{Δ} be the fundamental solution of the Laplace equation given by

$$
h_{\Delta}(x):= \begin{cases}\sigma_{2}^{-1} \ln |x|, & m=2, \\ (2-m)^{-1} \sigma_{m}^{-1}|x|^{2-m}, & m>2\end{cases}
$$

Then $Q_{j}=\partial_{j} h_{\Delta}$. Thus $Q_{j} *\left(\psi f_{j}\right)=\left(\partial_{j} h_{\Delta}\right) *\left(\psi f_{j}\right)=\partial_{j}\left[h_{\Delta} *\left(\Psi f_{j}\right)\right]$. So,

$$
\varphi[Q *(\psi \mathbf{f})]=\sum_{j=1}^{m}\left\{\partial_{j}\left[\varphi h_{\Delta} *\left(\Psi f_{j}\right)\right]-\left(\partial_{j} \varphi\right)\left[h_{\Delta} *\left(\Psi f_{j}\right)\right]\right\} .
$$

[23, Proposition 3.18.5], [8, Lemma 6.36] and [13, Lemma 1.4.1.3] give that $\varphi[Q *$ $(\psi \mathbf{f})] \in W^{s+1, q}\left(\mathbb{R}^{m}\right)$ and the estimate (3.4) holds.

Proposition 3.2. Let $0<\lambda<\infty, 1<q<\infty$, $s \in \mathbb{R}^{1}$. Then the mapping $\mathbf{f} \mapsto \tilde{E}^{\lambda} * \mathbf{f}$ for $\mathbf{f} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ can be extended by a unique way as a bounded linear operator from $W^{s, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ to $W^{s+2, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.
(See [22, Proposition 6.1].)
Proposition 3.3. Let $\varphi, \psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}\right), 1<q<\infty$ and $s \in \mathbb{R}^{1}$. Then there exists a constant C such that if $\mathbf{f} \in W^{s, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ then $\varphi\left[\tilde{E}^{0} *(\psi \mathbf{f})\right] \in W^{s+2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ and

$$
\left\|\varphi\left[\tilde{E}^{0} *(\psi \mathbf{f})\right]\right\|_{W^{s+2, q}\left(\mathbb{R}^{m}\right)} \leq C\|\mathbf{f}\|_{W^{s, q}\left(\mathbb{R}^{m}\right)} .
$$

Proof. Let $k \in N_{0}, \mathbf{f} \in W^{k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. Then

$$
\Delta\left[\tilde{E}^{0} *(\psi \mathbf{f})\right]=\nabla[Q *(\psi \mathbf{f})]-\psi \mathbf{f} \in W_{\mathrm{loc}}^{k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)
$$

by the definition of a fundamental solution and Proposition 3.1. Hence $\tilde{E}^{0} *$ $(\psi \mathbf{f}) \in W_{\text {loc }}^{k+2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ by [23, Proposition 3.18.3 and Proposition 3.18.2]. Denote $V_{\varphi, \psi} \mathbf{f}=\varphi\left[\tilde{E}^{\lambda} *(\psi \mathbf{f})\right]$. Then $V_{\varphi, \psi}: W^{k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow W^{k+2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. If $\mathbf{f}_{n} \rightarrow \mathbf{f}$ in $W^{k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ and $V_{\varphi, \psi} \mathbf{f}_{n} \rightarrow \mathbf{g}$ in $W^{k+2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, then $V_{\varphi, \psi} \mathbf{f}=\mathbf{g}$ because the convolution is continuous in the sense of distributions. So, $V_{\varphi, \psi}$: $W^{k, q}\left(R^{m} ; R^{m}\right) \rightarrow W^{k+2, q}\left(R^{m} ; R^{m}\right)$ is a bounded operator by the Closed graph theorem ([30, Theorem 3.10]).

Let $k \in N_{0}$. Denote $q^{\prime}=q /(q-1)$. Then $W^{k, q^{\prime}}\left(\mathbb{R}^{m}\right)=\grave{W}^{k, q^{\prime}}\left(\mathbb{R}^{m}\right)$ by [34, §2.3.3], [35, §2.12, Theorem] and [2, Theorem 4.2.2]. Since $V_{\psi, \phi}: W_{0}^{k, q^{\prime}}\left(R^{m} ; R^{m}\right) \rightarrow$ $W_{0}^{k+2, q^{\prime}}\left(R^{m} ; R^{m}\right)$ is bounded, the adjoint operator $\left[V_{\psi, \varphi}\right]^{\prime}: W^{-k-2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow$ $W^{-k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ is bounded, too. If $\mathbf{g}, \mathbf{h} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ then

$$
\int_{\mathbb{R}^{m}} \mathbf{g}(x) V_{\psi, \varphi} \mathbf{f}(x) \mathrm{d} x=\int_{\mathbb{R}^{m}} \mathbf{f}(y) V_{\varphi, \psi} \mathbf{g}(y) \mathrm{d} y,
$$

because $\tilde{E}^{0}(-x)=\tilde{E}^{0}(x)$ and $\tilde{E}_{i j}^{0}=\tilde{E}_{j i}^{0}$ by (3.2) and (3.3). Thus $V_{\varphi, \psi}=\left[V_{\psi, \varphi}\right]^{\prime}$: $W^{-k-2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow W^{-k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ is bounded.

According to According to [35, §2.4.2, Theorem 1] and [2, Theorem 4.2.2] one has

$$
\left(L^{q}\left(\mathbb{R}^{m}\right), W^{2, q}\left(\mathbb{R}^{m}\right)\right)_{1 / 2}=W^{1, q}\left(\mathbb{R}^{m}\right), \quad\left(W^{-2, q}\left(\mathbb{R}^{m}\right), L^{q}\left(\mathbb{R}^{m}\right)\right)_{1 / 2}=W^{-1, q}\left(\mathbb{R}^{m}\right)
$$

Since $V_{\varphi, \psi}: L^{q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow W^{2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right), V_{\varphi, \psi}: W^{-2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow L^{q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ are bounded, [1, p. 248] gives that $V_{\varphi, \psi}: W^{-1, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow W^{1, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ is bounded.

Suppose that s is not integer. Choose $k \in N$ such that $|s|<k$. Put $\theta=$ $(s+k+2) /(2 k+2)$. Then

$$
\begin{gathered}
\left(W^{-k-2, q}\left(\mathbb{R}^{m}\right), W^{k, q}\left(\mathbb{R}^{m}\right)\right)_{\theta, q}=W^{s, q}\left(\mathbb{R}^{m}\right), \\
\left(W^{-k, q}\left(\mathbb{R}^{m}\right), W^{k+2, q}\left(\mathbb{R}^{m}\right)\right)_{\theta, q}=W^{s+2, q}\left(\mathbb{R}^{m}\right)
\end{gathered}
$$

by $\left[7\right.$, Theorem 6.7] and $\left[36, \S 2.4 .2\right.$, Theorem]. Since $V_{\varphi, \psi}: W^{k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow$ $W^{k+2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right), V_{\varphi, \psi}: W^{-k-2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow W^{-k, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ are bounded operators, [32, Lemma 22.3] gives that $V_{\varphi, \psi}: W^{s, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow W^{s+2, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ is a bounded operator.

4. Brinkman single layer potential

Let now $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary. If $1<q<\infty$ and $\mathbf{g} \in L^{q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ then the single-layer potential for the Brinkman system $E_{\Omega}^{\lambda} \mathbf{g}$ and its associated pressure potential $Q_{\Omega} \mathbf{g}$ are given by

$$
\begin{aligned}
& E_{\Omega}^{\lambda} \mathbf{g}(x):=\int_{\partial \Omega} \tilde{E}^{\lambda}(x-y) \mathbf{g}(y) \mathrm{d} \sigma(y), \\
& Q_{\Omega} \mathbf{g}(x):=\int_{\partial \Omega} Q(x-y) \mathbf{g}(y) \mathrm{d} \sigma(y)
\end{aligned}
$$

More generally, if $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right)$, where g_{j} are distributions supported on $\partial \Omega$ then we define

$$
E_{\Omega}^{\lambda} \mathbf{g}(x):=\left\langle\mathbf{g}, \tilde{E}^{\lambda}(x-\cdot)\right\rangle, \quad Q_{\Omega} \mathbf{g}(x):=\langle\mathbf{g}, Q(x-\cdot)\rangle .
$$

Remark that $\left(E_{\Omega}^{\lambda} \mathbf{g}, Q_{\Omega} \mathbf{g}\right)$ is a solution of the Brinkman system (3.1) in the set $\mathbb{R}^{m} \backslash \partial \Omega$.
Lemma 4.1. Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary, $0<\lambda<$ ∞ and $1<q<\infty$. Then E_{Ω}^{λ} is a bounded linear operator from $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ to $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$. If $\mathbf{g} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ then $Q_{\Omega} \mathbf{g} \in L_{\text {loc }}^{q}\left(\mathbb{R}^{m}\right)$. If Ω is bounded then E_{Ω}^{0} is a bounded linear operator from $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ to $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$.
Proof. Put $q^{\prime}=q /(q-1)$. The trace operator γ_{Ω} is a bounded operator from $W^{1, q^{\prime}}(\Omega)$ to $W^{1-1 / q^{\prime}}(\partial \Omega)$ by [19, Theorem 6.8.13]. For $\mathbf{g} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ define $P \mathbf{g} \in W^{-1, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ by

$$
\langle P \mathbf{g}, \boldsymbol{\Psi}\rangle:=\left\langle\mathbf{g}, \gamma_{\Omega} \boldsymbol{\Psi}\right\rangle, \quad \boldsymbol{\Psi} \in W^{1, q^{\prime}}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) .
$$

Since $E_{\Omega}^{\lambda} \mathbf{g}=\tilde{E}^{\lambda} *(P \mathbf{g})$ and $P: W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right) \rightarrow W^{-1, q}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ is bounded, Proposition 3.2 gives that E_{Ω}^{λ} is a bounded linear operator from $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ to $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$. Since $Q_{\Omega} \mathbf{g}=Q *(P \mathbf{g})$, Proposition 3.1 gives that $Q_{\Omega} \mathbf{g} \in L_{\text {loc }}^{q}\left(\mathbb{R}^{m}\right)$ for $\mathbf{g} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$.

Suppose now that Ω is bounded. Since $E_{\Omega}^{0} \mathbf{g}=\tilde{E}^{0} *(P \mathbf{g})$, Proposition 3.3 gives that E_{Ω}^{0} is a bounded linear operator from $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ to $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$.

We denote by $\mathcal{E}_{\Omega}^{\lambda} \mathbf{g}$ the trace of $E_{\Omega}^{\lambda} \mathbf{g}$ on $\partial \Omega$.
Proposition 4.2. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with Lipschitz boundary and $4 / 3<q<4$. Denote by X the set of all vector functions \mathbf{f} on $\partial \Omega$ such that for each component S of $\partial \Omega$ there exists a constant c_{S} with $\mathbf{f}=c_{S} \mathbf{n}^{\Omega}$ on $S ; Y=\{\mathbf{g} \in$ $\left.W^{1-1 / q, q}\left(\partial \Omega, \mathcal{R}^{2}\right) ; \int_{\partial \Omega} \mathbf{g} \cdot \mathbf{f} \mathrm{d} \sigma=0 \forall \mathbf{f} \in X\right\}$. For $\mathbf{f}=\left(f_{1}, f_{2}\right) \in W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{2}\right)$ and $\mathbf{c} \in \mathbb{R}^{2}$ denote

$$
\begin{equation*}
\tilde{E}_{\Omega}(\mathbf{f}, \mathbf{c})=\left[\mathcal{E}_{\Omega}^{0} \mathbf{f}+\mathbf{c},\left(\left\langle f_{1}, 1\right\rangle_{\partial \Omega},\left\langle f_{2}, 1\right\rangle_{\partial \Omega}\right) / \int_{\partial \Omega} 1 \mathrm{~d} \sigma\right] \tag{4.1}
\end{equation*}
$$

Then $\tilde{E}_{\Omega}:\left[W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{2}\right) / X\right] \times \mathbb{R}^{2} \rightarrow Y \times \mathbb{R}^{2}$ is an isomorphism.
Proof. Put $s=1-1 / q$. Then $1 / q-(s-1 / 2)=1 / q-(1-1 / q)+1 / 2=2 / q-1 / 2=$ $(4-q) /(2 q)>0$ because $4>q$. Further, $(s+1 / 2)-1 / q=3 / 2-2 / q=(3 q-4) /(2 q)>$ 0 because $4 / 3<q$. Using $W^{t, q}(\partial \Omega)=B_{t}^{q, q}(\partial \Omega)$ for $t \notin \mathcal{Z}$ (see for example [7, Theorem 6.7]), we get by $\left[26\right.$, Theorem 10.5.3] that $\tilde{E}_{\Omega}:\left[W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{2}\right) / X\right] \times$ $\mathbb{R}^{2} \rightarrow Y \times \mathbb{R}^{2}$ is an isomorphism.

Proposition 4.3. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with Lipschitz boundary and $3 / 2<q<3$. Denote by X the set of all vector functions \mathbf{f} on $\partial \Omega$ such that for each component S of $\partial \Omega$ there exists a constant c_{S} with $\mathbf{f}=c_{S} \mathbf{n}^{\Omega}$ on $S ; Y=\{\mathbf{g} \in$ $\left.W^{1-1 / q, q}\left(\partial \Omega, \mathcal{R}^{3}\right) ; \int_{\partial \Omega} \mathbf{g} \cdot \mathbf{f d} \sigma=0 \forall \mathbf{f} \in X\right\}$. Then $\mathcal{E}_{\Omega}^{0}: W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{3}\right) / X \rightarrow Y$ is an isomorphism.
Proof. Put $s=1-1 / q$. Then $1 / q-s / 2=1 / q-[1 / 2-1 /(2 q)]=(3-q) /(2 q)>0$ because $3>q$. Further, $(s / 2+1 / 2)-1 / q=1 / 2-1 /(2 q)+1 / 2-1 / q=(2 q-3) /(2 q)>$ 0 because $3 / 2<q$. Using $W^{t, q}(\partial \Omega)=B_{t}^{q, q}(\partial \Omega)$ for $t \notin \mathcal{Z}$ (see for example [7, Theorem 6.7]), we get by $\left[26\right.$, Theorem 10.5.3] that $\mathcal{E}_{\Omega}^{0}: W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{3}\right) / X \rightarrow Y$ is an isomorphism.

5. Boundary value problem for the Brinkman system

We begin with some auxiliary results.
Lemma 5.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary and $1<$ $q<\infty$. If $\mathbf{u} \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then

$$
\begin{equation*}
\int_{\Omega} \nabla \cdot \mathbf{u} \mathrm{d} x=\int_{\partial \Omega} \mathbf{u} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma . \tag{5.1}
\end{equation*}
$$

Proof. If $\mathbf{u} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ then the Green formula gives (5.1). Since $\mathcal{C}^{\infty}\left(\mathbb{R}^{m}\right)$ is a dense subset of $W^{1, q}(\Omega)$ by [1, Theorem 3.22] and the trace is a continuous operator from $W^{1, q}(\Omega)$ to $W^{1-1 / q, q}(\partial \Omega)$ by [13, Theorem 1.5.1.2], we infer that (5.1) holds for $\mathbf{u} \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$.
Lemma 5.2. Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary. Let G be a bounded component of $\mathbb{R}^{m} \backslash \bar{\Omega}$ and $z \in G$. Define $\mathbf{w}(x):=(x-z) /|x-z|^{m}$. Then $\Delta \mathbf{w}=0, \nabla \cdot \mathbf{w}=0$ in $\mathbb{R}^{m} \backslash\{z\}$ and

$$
\int_{\partial G} \mathbf{w} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=-\sigma_{m}
$$

where \mathbf{n}^{Ω} denotes the unit exterior normal of Ω and σ_{m} is the surface of the unit sphere in \mathbb{R}^{m}.
Proof. $\mathbf{w}(x)=C_{1} \nabla h(x-z)$ where C_{1} is a constant and $h(x)=\ln |x|$ for $m=2$ and $h(x)=|x|^{2-m}$ for $m>2$. Since $\Delta h=0$ in $\mathbb{R}^{m} \backslash\{0\}$, we infer that $\Delta \mathbf{w}=0$, $\nabla \cdot \mathbf{w}=0$ in $\mathbb{R}^{m} \backslash\{z\}$.

Fix $r>0$ such that for $B:=\{x ;|x-z|<r\}$ we have $\bar{B} \subset G$. Since $\nabla \cdot w=0$ in $D:=G \backslash \bar{B}$, Lemma 5.1 gives

$$
\begin{gathered}
\int_{\partial G} \mathbf{w} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=-\int_{\partial D} \mathbf{w} \cdot \mathbf{n}^{D} \mathrm{~d} \sigma-\int_{\partial B} \mathbf{w} \cdot \mathbf{n}^{B} \mathrm{~d} \sigma=-\int_{D} \nabla \cdot \mathbf{w} \mathrm{~d} x \\
-\int_{\partial B} \frac{x-z}{|x-z|^{m}} \cdot \frac{x-z}{|x-z|} \mathrm{d} \sigma=0-\int_{\partial B}|x-z|^{1-m} \mathrm{~d} \sigma=-\sigma_{m} .
\end{gathered}
$$

Proposition 5.3. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary and $2 \leq m \leq 3$. Let $q \in(4 / 3,4)$ for $m=2$, and $q \in(3 / 2,3)$ for $m=3$. Let $\lambda=0$. If $\mathbf{f} \in W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right)$, $\chi \in L^{q}(\Omega)$ and $\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ then there exists a solution $(\mathbf{u}, p) \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of (1.1), (1.2) if and only if

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=\int_{\Omega} \chi \mathrm{d} x \tag{5.2}
\end{equation*}
$$

The velocity \mathbf{u} is unique and the pressure p is unique up to an additive constant. If

$$
\begin{equation*}
\int_{\Omega} p \mathrm{~d} x=0 \tag{5.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}(\Omega)}+\|p\|_{L^{q}(\Omega)} \leq C\left(\|\mathbf{f}\|_{W^{-1, q}(\Omega)}+\|\chi\|_{L^{q}(\Omega)}+\|\mathbf{g}\|_{W^{1-1 / q, q}(\partial \Omega)}\right) \tag{5.4}
\end{equation*}
$$

where C does not depend on \mathbf{f}, χ and \mathbf{g}.
Proof. If there is a solution of (1.1), (1.2) then (5.2) holds by Lemma 5.1.
Suppose now that $(\mathbf{u}, p) \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ is a solution of (1.1), (1.2) with $\mathbf{f} \equiv 0, \chi \equiv 0$ and $\mathbf{g} \equiv 0$. Remember that $W^{1, q}(\Omega)=F_{1}^{q, 2}(\Omega), L^{q}(\Omega)=F_{0}^{q, 2}(\Omega)$ by [37, Theorem 1.122]. Here $F_{s}^{q, r}(\Omega)$ denote Triebel-Lizorkin spaces. Put $s=1-1 / q$. If $m=2$ then $s-1 / 2<1 / q<s+1 / 2$. If $m=3$ then $s / 2<1 / q<s / 2+1 / 2$. So, [26, Theorem 10.6.2] forces that $\mathbf{u} \equiv 0$ and p is constant.

Now we prove the existence of a solution under assumption that $\mathbf{f} \equiv 0$ and $\chi \equiv 0$. Let $G(0), G(1), \ldots, G(k)$ be components of $\mathrm{R}^{m} \backslash \bar{\Omega}$, where $G(0)$ is unbounded. Choose $z^{j} \in G(j)$ for $j=1, \ldots, k$. Put

$$
w_{j}(x)=\frac{x-z^{j}}{\left|x-z^{j}\right|^{m}} .
$$

Then $-\Delta w_{j}=0, \nabla \cdot w^{j}=0$ in $\mathbb{R}^{m} \backslash\left\{z^{j}\right\}$ by Lemma 5.2. For $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in$ $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ put

$$
\begin{gathered}
V_{\Omega} \mu:=E_{\Omega}^{0} \mu+\sum_{j=1}^{k}\left\langle\mu, w_{j}\right\rangle w_{j} \quad \text { for } m=3, \\
V_{\Omega} \mu:=E_{\Omega}^{0}\left[\mu-\frac{\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)}{\sigma(\partial \Omega)} \sigma\right]+\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)+\sum_{j=1}^{k}\left\langle\mu, w_{j}\right\rangle w_{j} \quad \text { for } m=2, \\
\tilde{Q}_{\Omega} \mu=Q_{\Omega} \mu \quad \text { for } m=3, \\
\tilde{Q}_{\Omega} \mu=Q_{\Omega}\left[\mu-\frac{\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)}{\sigma(\partial \Omega)} \sigma\right] \quad \text { for } m=2 .
\end{gathered}
$$

Here σ denotes the surface measure on $\partial \Omega$. Then $V_{\Omega} \mu \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \cap \mathcal{C}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$, $\tilde{Q}_{\Omega} \mu \in L^{q}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ by Lemma 4.1. Moreover, $-\Delta V_{\Omega} \mu+\nabla \tilde{Q}_{\Omega} \mu=0, \nabla \cdot V_{\Omega} \mu=0$ in Ω. Denote by $\mathcal{V}_{\Omega} \mu$ the trace of $V_{\Omega} \mu$ on $\partial \Omega$. Proposition 4.2 and Proposition 4.3 force that $\mathcal{V}_{\Omega}: W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right) \rightarrow W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ is a Fredholm operator with index 0 .

We show that the dimension of the kernel of \mathcal{V}_{Ω} is at most 1 . Suppose that $\mu \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and $\mathcal{V}_{\Omega} \mu=0$. Since $\nabla \cdot E_{\Omega}^{0} \nu=0$ for all $\nu \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$, $\nabla \cdot \mathbf{d}=0$ for all $\mathbf{d} \in \mathrm{R}^{2}$ and $\nabla \cdot w_{j}=0$ in $G(i)$ for $j \neq i$, Lemma 5.1 gives

$$
\begin{aligned}
& 0=\int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot \mathcal{V}_{\Omega} \mu \mathrm{d} \sigma=\int_{G(i)} \nabla \cdot\left(\mathcal{V}_{\Omega} \mu-\left\langle\mu, w_{i}\right\rangle w_{i}\right) \mathrm{d} x \\
& +\left\langle\mu, w_{i}\right\rangle \int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot w_{i} \mathrm{~d} \sigma=\left\langle\mu, w_{i}\right\rangle \int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot w_{i} \mathrm{~d} \sigma
\end{aligned}
$$

Since

$$
\int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot w_{i} \mathrm{~d} \sigma \neq 0
$$

by Lemma 5.2, we infer that

$$
\begin{equation*}
\left\langle\mu, w_{i}\right\rangle=0 \quad \text { for } i=1, \ldots, k \tag{5.5}
\end{equation*}
$$

We now show that there exist constants $c_{0}, c_{1}, \ldots, c_{k}$ such that

$$
\begin{equation*}
\mu=c_{j} \mathbf{n}^{\Omega} \sigma \quad \text { on } \partial G(j) \tag{5.6}
\end{equation*}
$$

If $m=3$ then Proposition 4.3 gives that there exist constants $c_{0}, c_{1}, \ldots, c_{k}$ such that (5.6) holds. Let now $m=2$. Then $0=\mathcal{V}_{\Omega} \mu=\mathcal{E}_{\Omega}^{0} \tilde{\mu}+\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)$, where

$$
\tilde{\mu}=\mu-\frac{\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)}{\sigma(\partial \Omega)} \sigma .
$$

Let \tilde{E}_{Ω} be given by (4.1). Since

$$
\tilde{E}_{\Omega}\left(\tilde{\mu},\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)=\left[\mathcal{V}_{\Omega} \mu, 0\right]=[0,0]\right.
$$

Proposition 4.2 gives that $\left(\left\langle\mu_{1}, 1\right\rangle,\left\langle\mu_{2}, 1\right\rangle\right)=(0,0)$ and there are constants c_{0}, \ldots, c_{k} such that $\tilde{\mu}=c_{j} \mathbf{n}^{\Omega}$ on $\partial G(j)$. So, $\mu=\tilde{\mu}=c_{j} \mathbf{n}^{\Omega}$ on $\partial G(j)$ for $j=0, \ldots, k$. Therefore (5.6) holds for $m=2,3$. If $i \geq 1$ then (5.5), (5.6) give

$$
\begin{aligned}
0=\left\langle\mu, w_{i}\right\rangle & =\sum_{j=0}^{k} \int_{\partial G(j)} c_{j} \mathbf{n}^{\Omega} \cdot w_{i} \mathrm{~d} \sigma=-\sum_{j \neq 0, i} c_{j} \int_{G(j)} \nabla \cdot w_{i} \mathrm{~d} x \\
+ & c_{i} \int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot w_{i} \mathrm{~d} \sigma+c_{0} \int_{\partial G(0)} \mathbf{n}^{\Omega} \cdot w_{i} \mathrm{~d} \sigma \\
& =-c_{i} \int_{\partial G(i)} \sigma_{m}+c_{0} \int_{\partial G(0)} \mathbf{n}^{\Omega} \cdot w_{i} \mathrm{~d} \sigma
\end{aligned}
$$

by Lemma 5.1 and Lemma 5.2. Therefore

$$
c_{i}=c_{0} \sigma_{m}^{-1} \int_{\partial G(0)} \mathbf{n}^{\Omega} \cdot w_{i} \mathrm{~d} \sigma
$$

So, the dimension of the kernel of \mathcal{V}_{Ω} is at most 1 .
Since $\mathcal{V}_{\Omega}: W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right) \rightarrow W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ is a Fredholm operator with index 0 , the co-dimension of the range of \mathcal{V}_{Ω} is at most 1 . Since $-\Delta V_{\Omega} \mu+\nabla \tilde{Q}_{\Omega} \mu=$ $0, \nabla \cdot V_{\Omega} \mu=0$ in Ω, the condition (5.2) gives that

$$
\mathcal{V}_{\Omega}\left(W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)\right)=\left\{\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right) ; \int_{\partial \Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=0\right\}
$$

So, if $\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfies

$$
\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=0
$$

then there exists $\mu \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ such that $\left(V_{\Omega} \mu, \tilde{Q}_{\Omega} \mu\right) \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times$ $L^{q}(\Omega)$ is a solution of (1.1), (1.2) with $\mathbf{f} \equiv 0, \chi \equiv 0$.

Let $\mathbf{f} \in W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right), \chi \in L^{q}(\Omega)$ and $\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfy (5.2). Choose an open ball B in \mathbb{R}^{m} such that $\bar{\Omega} \subset B$. Put $\tilde{\chi}:=\chi$ in $\Omega, \tilde{\chi}:=d$ in $\mathbb{R}^{m} \backslash \Omega$, where d is a constant such that

$$
\begin{equation*}
\int_{B} \tilde{\chi} \mathrm{~d} x=0 \tag{5.7}
\end{equation*}
$$

Denote $X:=\left\{\mathbf{v} \in W^{1, q /(q-1)}\left(B ; \mathbb{R}^{m}\right) ; \mathbf{v}=0\right.$ in $\left.B \backslash \Omega\right\}$. Then $W^{1, q /(q-1)}\left(\Omega ; \mathbb{R}^{m}\right)=$ $\left\{\left.\mathbf{v}\right|_{\Omega} ; \mathbf{v} \in X\right\}$ by [2, Theorem 9.1.3] and thus \mathbf{f} is a bounded linear operator on X. According to Hahn-Banach theorem ([33, Theorem 4.3-A]) there exists $\tilde{\mathbf{f}} \in$
$W^{-1, q}\left(B ; \mathbb{R}^{m}\right)$ such that $\langle\tilde{\mathbf{f}}, \mathbf{v}\rangle=\langle\mathbf{f}, \mathbf{v}\rangle$ for all $\mathbf{v} \in X$. Since (5.7) holds there exists a solution $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1, q}\left(B, \mathbb{R}^{m}\right) \times L^{q}(B)$ of

$$
\begin{aligned}
-\Delta \tilde{\mathbf{u}}+\nabla \tilde{p}=\tilde{\mathbf{f}}, & \nabla \cdot \tilde{\mathbf{v}}=\tilde{\chi} \quad \text { in } B, \\
\tilde{\mathbf{u}}=0 & \text { on } \partial B .
\end{aligned}
$$

(See [11, Theorem 2.1].) Then $-\Delta \tilde{\mathbf{u}}+\nabla \tilde{p}=\mathbf{f}, \nabla \cdot \tilde{\mathbf{u}}=\chi$ in Ω. Lemma 5.1 forces

$$
\int_{\partial \Omega} \tilde{\mathbf{u}} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=\int_{\Omega} \nabla \cdot \tilde{\mathbf{u}} \mathrm{d} x=\int_{\Omega} \chi \mathrm{d} x .
$$

Put $\tilde{\mathbf{g}}=\mathbf{g}-\tilde{\mathbf{u}}$ on $\partial \Omega$. Then $\tilde{\mathbf{g}} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ by [19, Theorem 6.8.13]. According to (5.2) we have

$$
\int_{\partial \Omega} \tilde{\mathbf{g}} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma-\int_{\partial \Omega} \tilde{\mathbf{u}} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma=\int_{\Omega} \chi \mathrm{d} x-\int_{\Omega} \chi \mathrm{d} x=0 .
$$

We have proved that there exists a solution $(\mathbf{v}, \rho) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of

$$
\begin{aligned}
-\Delta \mathbf{v}+\nabla \rho=0, & \nabla \cdot \mathbf{v}=0 \\
\mathbf{v}=\tilde{\mathbf{g}} & \text { on } \partial \Omega .
\end{aligned}
$$

Put $\mathbf{u}:=\tilde{\mathbf{u}}+\mathbf{v}, p:=\tilde{p}+\rho$. Then $(\mathbf{u}, p) \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ is a solution of (1.1), (1.2).

Define

$$
L(\mathbf{u}, p):=\left(-\Delta \mathbf{u}+\nabla p, \nabla \cdot \mathbf{p},\left.\mathbf{u}\right|_{\partial \Omega}\right) .
$$

Then L is a bounded linear operator from $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ to $W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times$ $L^{q}(\Omega) \times W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. (See [19, Theorem 6.8.13], [37, Theorem 1.122], [25, Proposition 7.6].) Denote by Y the set of (\mathbf{u}, p) from $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ satisfying (5.3). Further denote by Z the set of all $(\mathbf{f}, \chi, \mathbf{g})$ from $\left(W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times\right.$ $\left.L^{q}(\Omega) \times W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)\right)$ satisfying (5.2). We have proved that $L: Y \rightarrow Z$ is an isomorphism. So, $L^{-1}: Z \rightarrow Y$ is an isomorphism, too. Thus there exists a constant C such that (5.4) holds.

Theorem 5.4. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1 \leq$ $s<\infty, 1<q<\infty$ and $0 \leq \lambda, \beta<\infty$. Suppose that one of the following conditions is fulfilled:
(1) $s=1$ and $q=2$.
(2) $\Omega \subset \mathbb{R}^{2}, s=1$ and $4 / 3<q<4$.
(3) $\Omega \subset \mathbb{R}^{3}, s=1$ and $3 / 2<q<3$.
(4) $\partial \Omega$ is of class \mathcal{C}^{1} and $s=1$.
(5) $\partial \Omega$ is of class $\mathcal{C}^{k, 1}$ with $k \in N$ and $s \leq k+1$.

If $\mathbf{f} \in W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right)$, $\chi \in W^{s-1, q}(\Omega)$ and $\mathbf{g} \in W^{s-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ then there exists a solution $(\mathbf{u}, p) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ of (1.1), (1.4) if and only if (5.2) holds. The velocity \mathbf{u} is unique and the pressure p is unique up to an additive constant. If p satisfies (5.3) then

$$
\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|p\|_{W^{s-1, q}(\Omega)} \leq C\left(\|\mathbf{f}\|_{W^{s-2, q}(\Omega)}+\|\chi\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}\|_{W^{s-1 / q, q}(\partial \Omega)}\right)
$$

where C does not depend on \mathbf{f}, χ and \mathbf{g}.

Proof. Lemma 5.1 forces that (5.2) is a necessary condition for the solvability of the problem (1.1), (1.4).

Suppose first that $\beta=0$. Put $X_{s, q}:=W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega), Y_{s, q}:=$ $W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega) \times W^{s-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. For $\mu \in \mathbb{R}^{1}$ define

$$
B_{\mu}(\mathbf{u}, p):=\left(-\Delta \mathbf{u}+\mu \mathbf{u}+\nabla p, \nabla \cdot \mathbf{u}, \gamma_{\Omega} \mathbf{u}\right)
$$

where γ_{Ω} is the trace operator. Then B_{μ} is a bounded linear operator from $X_{s, q}$ to $Y_{s, q}$ by [13, Theorem 1.4.4.6] and [13, Theorem 1.5.1.2]. Since $B_{\lambda}(\mathbf{u}, p)-B_{0}(\mathbf{u}, p)=$ $(\lambda \mathbf{u}, 0,0)$, the operator $B_{\lambda}-B_{0}: X_{s, q} \rightarrow Y_{s, q}$ is compact by Proposition 2.1. So, $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 if and only if $B_{0}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 .

Denote by Ker B_{λ} the kernel of B_{λ}. If dim Ker $B_{\lambda} \leq 1$ then Ker $B_{\lambda}=$ $\{(\mathbf{u}, p) ; \mathbf{u} \equiv 0, p$ is constant $\}$. Suppose now that $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 and $\operatorname{dim} \operatorname{Ker} B_{\lambda} \leq 1$. Then the co-dimension of the range of B_{λ} is equal to 1 . So, (5.2) is a necessary and sufficient condition for the solvability of the problem (1.1), (1.2). Denote by Z the space of all $p \in W^{s-1, q}(\Omega)$ satisfying (5.3), by W the space of $\mathbf{g} \in W^{s-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (5.2), $X:=W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times Z$ and $Y:=W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega) \times W$. Then B_{λ} is an isomorphism X onto Y. So, propositions of the theorem hold.

Let $s=1$ and $q=2$. If $(\mathbf{u}, p) \in W^{1,2}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{2}(\Omega)$ is a solution of (1.1), (1.2) with $\mathbf{f} \equiv 0, \chi \equiv 0$ and $\mathbf{g} \equiv 0$, then $\mathbf{u} \equiv 0$ and p is constant by [6, Theorem IV.8.1]. Moreover $B_{0}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 by [6, Theorem IV.5.2]. Thus $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 and (5.2) is a necessary and sufficient condition for the solvability of the problem (1.1), (1.2).

If $\partial \Omega$ is of class \mathcal{C}^{1} and $s=1$ then $B_{0}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 by [11, Theorem 2.1]. So, $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0. If $q \geq 2$ then $X_{s, q} \hookrightarrow X_{1,2}, Y_{s, q} \hookrightarrow Y_{1,2}$ by Hölder's inequality and $X_{s, q}$ is a dense subset of $X_{1,2}, Y_{s, q}$ is a dense subset of $Y_{1,2}$ by [1, Theorem 3.22]. If $q \leq 2$ then $X_{1,2} \hookrightarrow X_{s, q}, Y_{1,2} \hookrightarrow Y_{s, q}$ by Hölder's inequality and $X_{1,2}$ is a dense subset of $X_{s, q}, Y_{1,2}$ is a dense subset of $Y_{s, q}$ by [1, Theorem 3.22]. So, [23, Lemma 1.8.4] gives that the kernel of $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is the same as the kernel of $B_{\lambda}: X_{1,2} \rightarrow Y_{1,2}$. Hence the dimension of the kernel of $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is equal to 1 . We have proved that the proposition of the Theorem is true.

Suppose now that $s=1$ and $2 \leq m \leq 3$. If $m=2$ suppose that $4 / 3<q<4$. If $m=3$ suppose that $3 / 2<q<3$. Then $B_{0}: X_{1, q} \rightarrow Y_{1, q}$ is a Fredholm operator with index 0 by Proposition 5.3. So, $B_{\lambda}: X_{1, q} \rightarrow Y_{1, q}$ is a Fredholm operator with index 0 . If $q \geq 2$ then $X_{1, q} \hookrightarrow X_{1,2}, Y_{1, q} \hookrightarrow Y_{1,2}$ by Hölder's inequality and $X_{1, q}$ is a dense subset of $X_{1,2}, Y_{1, q}$ is a dense subset of $Y_{1,2}$ by [1, Theorem 3.22]. If $q \leq 2$ then $X_{1,2} \hookrightarrow X_{s, q}, Y_{1,2} \hookrightarrow Y_{1, q}$ by Hölder's inequality and $X_{1,2}$ is a dense subset of $X_{1, q}, Y_{1,2}$ is a dense subset of $Y_{1, q}$ by [1, Theorem 3.22]. So, [23, Lemma 1.8.4] gives that the kernel of $B_{\lambda}: X_{1, q} \rightarrow Y_{1, q}$ is the same as the kernel of $B_{\lambda}: X_{1,2} \rightarrow Y_{1,2}$. Hence the dimension of the kernel of $B_{\lambda}: X_{1, q} \rightarrow Y_{1, q}$ is equal to 1 . We have proved that the proposition of the Theorem is true.

Suppose now that $\partial \Omega$ is of class $\mathcal{C}^{k, 1}$ with $k \in N$ and $s=k+1$. Then $B_{0}: X_{s, q} \rightarrow$ $Y_{s, q}$ is a Fredholm operator with index 0 by [5, Theorem 4.8]. So, $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 . Since the kernel of $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a subset of the kernel of $B_{\lambda}: X_{1, q} \rightarrow Y_{1, q}$, the dimension of the kernel of $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is at most 1. We have proved that the proposition of the Theorem is true.

Suppose now that $\partial \Omega$ is of class $\mathcal{C}^{k, 1}$ with $k \in N$ and $k<s<k+1$. Define

$$
\tilde{B}_{\mu}(\mathbf{u}, p):=\left(-\Delta \mathbf{u}+\mu \mathbf{u}+\nabla p, \nabla \cdot \mathbf{u}+\int_{\Omega} p \mathrm{~d} x, \gamma_{\Omega} \mathbf{u}\right) .
$$

Since $B_{\lambda}: X_{k, q} \rightarrow Y_{k, q}$ and $B_{\lambda}: X_{k+1, q} \rightarrow Y_{k+1, q}$ are Fredholm operators with index 0 , and the operator $\tilde{B}_{\lambda}-B_{\lambda}$ is finite-dimensional, $\tilde{B}_{\lambda}: X_{k, q} \rightarrow Y_{k, q}$ and $\tilde{B}_{\lambda}: X_{k+1, q} \rightarrow Y_{k+1, q}$ are Fredholm operators with index 0 . Suppose now that $(\mathbf{u}, p) \in X_{k, q}$ and $\tilde{B}_{\lambda}(\mathbf{u}, p)=0$. According to Green's formula
$0=\int_{\Omega}\left(\nabla \cdot \mathbf{u}+\int_{\Omega} p \mathrm{~d} x\right) \mathrm{d} x=\int_{\partial \Omega} \mathbf{u} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma+\int_{\Omega} p \mathrm{~d} x \cdot \int_{\Omega} 1 \mathrm{~d} x=\int_{\Omega} p \mathrm{~d} x \cdot \int_{\Omega} 1 \mathrm{~d} x$.
Since $\int_{\Omega} p \mathrm{~d} x=0$ we have $B_{\lambda}(\mathbf{u}, p)=0$. We have proved that $(\mathbf{u}, p)=0$. Hence $\tilde{B}_{\lambda}: X_{k, q} \rightarrow Y_{k, q}$ and $\tilde{B}_{\lambda}: X_{k+1, q} \rightarrow Y_{k+1, q}$ are isomorphisms. We now use the real interpolation. Choose $\theta \in(0,1)$ such that $s=(1-\theta) k+\theta k$. Then

$$
\left(X_{k, q}, X_{k+1, q}\right)_{\theta, q}=X_{s, q}, \quad\left(Y_{k, q}, Y_{k+1, q}\right)_{\theta, q}=Y_{s, q}
$$

by [7, Corollary 6.8] and [32, Lemma 41.3]. So, [3, Theorem 13.7.1] forces that \tilde{B}_{λ} : $X_{s, q} \rightarrow Y_{s, q}$ is an isomorphism, too. (We can also use the complex interpolation and [16, Proposition 2.4], [35, §1.11.3], [3, Theorem 13.7.1].) Therefore $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 . Since the kernel of $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a subset of the kernel $B_{\lambda}: X_{k, q} \rightarrow Y_{k, q}$, the dimension of the kernel of $B_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is equal to 1 . We have proved that propositions of the Theorem hold.

Suppose now that $\beta>0$. Define

$$
C_{\lambda}(\mathbf{u}, p):=\left(-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p, \nabla \cdot \mathbf{u}, \gamma_{\Omega} \mathbf{u}+\beta \int_{\Omega} \mathbf{u} \mathrm{d} x\right) .
$$

Since the operator $C_{\lambda}-B_{\lambda}$ is finite-dimensional, the operator $C_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 . Let now $(\mathbf{u}, p) \in X_{s, q}$ be such that $C_{\lambda}(\mathbf{u}, p)=0$. Then

$$
\begin{array}{rr}
-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=0, \quad \nabla \cdot \mathbf{u}=0 & \text { in } \Omega \\
\mathbf{u}=-\beta \int_{\Omega} \mathbf{u} \mathrm{d} x & \text { on } \partial \Omega .
\end{array}
$$

Thus there is a constant c such that $\mathbf{u} \equiv-\beta \int_{\Omega} \mathbf{u} \mathrm{d} x, p \equiv c$. Therefore

$$
0=\int_{\Omega}\left(\mathbf{u}+\beta \int_{\Omega} \mathbf{u} \mathrm{d} x\right) \mathrm{d} x=\int_{\Omega} \mathbf{u} \mathrm{d} x\left(1+\beta \int_{\Omega} 1 \mathrm{~d} x\right) .
$$

Since $\beta>0$ we infer that $\int_{\Omega} \mathbf{u} \mathrm{d} x=0$. Hence $B_{\lambda}(\mathbf{u}, p)=0$. We have proved that $\mathbf{u} \equiv 0$. Since the dimension of the kernel of $C_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is equal to 1 and the the operator $C_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is a Fredholm operator with index 0 , the co-dimension of the range of $C_{\lambda}: X_{s, q} \rightarrow Y_{s, q}$ is equal to 1 . Therefore (5.2) is a necessary and sufficient condition for the solvability of the problem (1.1), (1.4). So, C_{λ} is an isomorphism X onto Y.

6. Darcy-Forchheimer-Brinkman system

Lemma 6.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $k \in \mathbb{N}$ and $1<q<\infty$. Then there is a constant C such that the following holds: If $\mathbf{w} \in W^{1, q}\left(\Omega ; \mathbb{R}^{k}\right)$ then $|\mathbf{w}| \in W^{1, q}(\Omega)$ and

$$
\||\mathbf{w}|\|_{W^{1, q}(\Omega)} \leq C\|\mathbf{w}\|_{W^{1, q}(\Omega)} .
$$

Proof. Fix $\mathbf{w} \in W^{1, q}\left(\Omega ; \mathbb{R}^{k}\right)$. Put $g_{i}:=\left|w_{i}\right|$. Then $g_{i} \in W^{1, q}(\Omega)$ and $\left\|g_{i}\right\|_{W^{1, q}(\Omega)}=$ $\left\|w_{i}\right\|_{W^{1, q}(\Omega)}$ by $\left[20\right.$, Theorem 6.17]. For $\epsilon \geq 0$ put $g^{\epsilon}:=\left|\left(g_{1}+\epsilon, \ldots, g_{k}+\epsilon\right)\right|$. Remark that $g^{0}=|\mathbf{w}|$,

$$
\left\|g^{0}\right\|_{L^{q}(\Omega)} \leq k\|\mathbf{w}\|_{L^{q}(\Omega)}
$$

and $g^{\epsilon} \rightarrow g^{0}$ in $L^{q}(\Omega)$ as $\epsilon \rightarrow 0_{+}$. If $\epsilon>0$ then

$$
\partial_{j} g^{\epsilon}(x)=\frac{1}{2 g^{\epsilon}(x)} \sum_{i=1}^{m}\left(g_{i}(x)+\epsilon\right) \partial_{j} g_{i}(x) .
$$

So,

$$
\left.\left|\partial_{j} g^{\epsilon}\right| \leq \mid \partial_{j} g_{1}, \ldots, \partial_{j} g_{k}\right)|\leq|\left(\partial _ { j } g _ { 1 } \left|+\cdots+\left|\partial_{j} g_{k}\right|\right.\right.
$$

Therefore

$$
\left\|\partial_{j} g^{\epsilon}\right\|_{L^{q}(\Omega)} \leq \sum_{i=1}^{k}\left\|\partial_{j} g_{i}\right\|_{L^{q}(\Omega)}
$$

If $g^{0}(x)>0$ then $\partial_{j} g^{\epsilon}(x) \rightarrow \frac{1}{2}\left|g^{0}(x)\right|^{-1} \sum_{i=1}^{m} g_{i}(x) \partial_{j} g_{i}(x)$ as $\epsilon \rightarrow 0_{+}$. If $g^{0}(x)=0$ then $\partial_{j} g_{i}(x)=0$ by [20, Theorem 6.17] and thus $\partial_{j} g^{\epsilon}(x)=0$. Put

$$
\begin{gathered}
f(x):=\frac{1}{2 g^{0}(x)} \sum_{i=1}^{m} g_{i}(x) \partial_{j} g_{i}(x) \quad \text { for } g^{0}(x)>0, \\
f(x):=0 \quad \text { for } g^{0}(x)=0
\end{gathered}
$$

Then $\partial_{j} g^{\epsilon} \rightarrow f$ in $L^{q}(\Omega)$ as $\epsilon \rightarrow 0_{+}$by Lebesgue's theorem. (See [4, Theorem 3.12].) So, $g^{1 / n}$ is a Cauchy sequence in $W^{1, q}(\Omega)$. Therefore there exists $h \in W^{1, q}(\Omega)$ such that $g^{1 / n} \rightarrow h$ in $W^{1, q}(\Omega)$. Since $g^{1 / n} \rightarrow|\mathbf{w}|$ in $L^{q}(\Omega)$, we infer that $h=|\mathbf{w}|$. Since

$$
\left\|g^{1 / n}\right\|_{W^{1, q}(\Omega)} \leq k^{2}\|\mathbf{w}\|_{W^{1, q}(\Omega)},
$$

we infer that

$$
\||\mathbf{w}|\|_{W^{1, q}(\Omega)} \leq k^{2}\|\mathbf{w}\|_{W^{1, q}(\Omega)} .
$$

Remark 6.2. Clearly $\||\mathbf{w}|-|\mathbf{v}|\|_{L^{r}(\Omega)} \leq\|\mathbf{w}-\mathbf{v}\|_{L^{r}(\Omega)}$. But in general, it does not exist a constant C such that

$$
\||\mathbf{w}|-|\mathbf{v}|\|_{W^{1, q}(\Omega)} \leq\|\mathbf{w}-\mathbf{v}\|_{W^{1, q}(\Omega)}
$$

This shows the following easy example: Let $I=(0,1)$. Fix $q \in(1, \infty)$. Put $f_{\alpha}(t):=t^{\alpha}, g_{\alpha}(t):=t^{\alpha}-1$. Then $f_{\alpha}^{\prime}(t)=g_{\alpha}^{\prime}(t)=\alpha t^{\alpha-1}$. So, $f_{\alpha}, g_{\alpha} \in W^{1, q}(I)$ if and only if $\alpha>(q-1) / q$. Since $f_{\alpha}-g_{\alpha} \equiv 1$, we have $\left\|f_{\alpha}-g_{\alpha}\right\|_{W^{1, q}(I)}=1$. Since $\left|f_{\alpha}\right|-\left|g_{\alpha}\right|=2 t^{\alpha}-1$, we have $\partial_{t}\left(\left|f_{\alpha}(t)\right|-\left|g_{\alpha}(t)\right|\right)=2 \alpha t^{\alpha-1}$. So,

$$
\int_{0}^{1}\left|\partial_{t}\left(\left|f_{\alpha}(t)\right|-\left|g_{\alpha}(t)\right|\right)\right|^{q} \mathrm{~d} t=(2 \alpha)^{q} \int_{0}^{1} t^{q \alpha-q} \mathrm{~d} t=\frac{(2 \alpha)^{q}}{\alpha q-q+1} .
$$

If $\alpha \searrow(q-1) / q$ then $\left\|\left|f_{\alpha}\right|-\left|g_{\alpha}\right|\right\|_{W^{1, q(I)}}^{q} \geq \frac{(2 \alpha)^{q}}{\alpha q-q+1} \rightarrow \infty$.
Lemma 6.3. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1 \leq s<3$ and $\max (1, m / 3)<q<\infty$. For $\mathbf{u}, \mathbf{v} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$ define

$$
A(\mathbf{u}, \mathbf{v}):=|\mathbf{u}| \mathbf{v} .
$$

(1) Then there is a positive constant C such that the following holds: If $\mathbf{u}, \mathbf{v} \in$ $W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then $A(\mathbf{u}, \mathbf{v}) \in W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right)$ and

$$
\|A(\mathbf{u}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq C\|\mathbf{u}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} .
$$

(2) Suppose that $s \leq 2$. If $s<2$ and $s q<m=3$ suppose moreover that $q \geq 6 /(3+2 s)$. If $s<2$ and $m /(m-2+s)<q<m / s$ suppose moreover that $q \geq m /(2+s)$. Then

$$
\begin{equation*}
\|A(\mathbf{u}, \mathbf{u})-A(\mathbf{v}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq C\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\left(\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|\mathbf{v}\|_{W^{s, q}(\Omega)}\right) \tag{6.1}
\end{equation*}
$$

Proof. According to Lemma 6.1 there exists a constant C_{1} such that

$$
\||\mathbf{w}|\|_{W^{1, q}(\Omega)} \leq C_{1}\|\mathbf{w}\|_{W^{s, q}(\Omega)}
$$

for all $\mathbf{w} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$. Since $\min (s, 1)>s-2$ and $s+1-(s-2)=3>m / q$, Lemma 7.1 forces that there is a constant C_{2} such that

$$
\|f g\|_{W^{s-2, q}(\Omega)} \leq C_{2}\|f\|_{W^{1, q}(\Omega)}\|g\|_{W^{s, q}(\Omega)}
$$

for all $f \in W^{1, q}(\Omega)$ and $g \in W^{s, q}(\Omega)$. If $\mathbf{u}, \mathbf{v} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then $\|A(\mathbf{u}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq C_{2} m\||\mathbf{u}|\|_{W^{1, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} \leq C_{1} C_{2} m\|\mathbf{u}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)}$.

As Remark 6.2 shows, the proof of the second part of Lemma will be a bit complicated. Since $A(\mathbf{u}, \mathbf{u})-A(\mathbf{v}, \mathbf{v})=A(\mathbf{u}, \mathbf{u}-\mathbf{v})+(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}$, we have

$$
\begin{gather*}
\|A(\mathbf{u}, \mathbf{u})-A(\mathbf{v}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \tag{6.2}\\
\leq C_{1} C_{2} m\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{W^{s-2, q}(\Omega)}
\end{gather*}
$$

Suppose that $s \leq 2$. Suppose first that $s q \geq m$. According to Lemma 2.2 there is a positive constant C_{3} such that

$$
\|f\|_{L^{2 q}(\Omega)} \leq C_{3}\|f\|_{W^{s, q}(\Omega)} \quad \forall f \in W^{s, q}(\Omega)
$$

If $\mathbf{u}, \mathbf{v} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then

$$
\begin{gathered}
\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{L^{q}(\Omega)} \leq\||\mathbf{u}-\mathbf{v}| \mathbf{v}\|_{L^{q}(\Omega)} \leq\||\mathbf{u}-\mathbf{v}|\|_{L^{2 q}(\Omega)}\|\mathbf{v}\|_{L^{2 q}(\Omega)} \\
\leq C_{3}^{2} m^{2}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)}
\end{gathered}
$$

by Hölder's inequality. So,

$$
\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{W^{s-2, q}(\Omega)} \leq C_{3}^{2} m^{2}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} .
$$

This and (6.2) force that (6.1) holds with $C \geq C_{1} C_{2} m+C_{3}^{2} m^{2}$.
Suppose now that $s \leq 2$ and $s q<m$. Put $r=m q /(m-s q)$. Then there is a constant C_{4} such that

$$
\begin{equation*}
\|f\|_{L^{r}(\Omega)} \leq C_{4}\|f\|_{W^{s, q}(\Omega)} \quad \text { for } f \in W^{s, q}(\Omega) \tag{6.3}
\end{equation*}
$$

by Lemma 2.2. We show that $r / 2 \geq 1$. Since $q>m / 3$ we have for $m \geq 4$ that $r / 2>m(m / 3) /[2(m-m / 3)]=m / 4 \geq 1$. If $m=2$ then $r / 2=q /(2-s q) \geq$ $q /(2-1)=q>1$. Suppose now that $m=3$. Since $q \geq 6 /(3+2 s)$ we obtain

$$
\frac{r}{2}=\frac{3 q}{2(3-s q)} \geq \frac{18 /(3+2 s)}{6-12 s /(3+2 s)}=\frac{3}{(3+2 s)-2 s}=1 .
$$

Hölder's inequality forces

$$
\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{L^{r / 2}(\Omega)} \leq\|\mathbf{u}-\mathbf{v}\|_{L^{r}(\Omega)}\|\mathbf{v}\|_{L^{r}(\Omega)}
$$

Using (6.3)

$$
\begin{equation*}
\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{L^{r / 2}(\Omega)} \leq C_{4}^{2} m^{2}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} . \tag{6.4}
\end{equation*}
$$

Suppose first that $s=2$. Since $m / 3<q$ we have $r / 2=q m /(2 m-4 q)>q m /(2 m-$ $4 m / 3)=q \cdot 3 / 2>q$. So, there is a constant C_{5} such that

$$
\begin{equation*}
\|f\|_{L^{q}(\Omega)} \leq C_{5}\|f\|_{L^{r / 2}(\Omega)} \quad \forall f \in L^{r / 2}(\Omega) \tag{6.5}
\end{equation*}
$$

According to (6.4) we obtain

$$
\begin{gathered}
\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{W^{s-2, q}(\Omega)}=\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{L^{q}(\Omega)} \leq C_{5}\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{L^{r / 2}(\Omega)} \\
\leq C_{5} C_{4}^{2} m^{2}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} .
\end{gathered}
$$

Therefore (6.2) gives that (6.1) holds with $C \geq C_{1} C_{2} m+C_{5} C_{4} m^{2}$.
Let now $s<2$ and $s q<m$. If $m=2$ then $r / 2 \geq q$ as we have proved. So, there is a constant C_{5} such that (6.5) holds. Therefore there is a constant C_{6} such that

$$
\begin{equation*}
\|f\|_{W^{s-2, q}(\Omega)} \leq C_{6}\|f\|_{L^{r / 2}(\Omega)} \quad \forall f \in L^{r / 2}(\Omega) \tag{6.6}
\end{equation*}
$$

Suppose now that $m \geq 3$. Put $q^{\prime}=q /(q-1)$ and $t=(r / 2) /(r / 2-1)$. Suppose first that $(2-s) q^{\prime} \geq m$. According to Lemma 2.2 there is a constant C_{7} such that

$$
\|g\|_{L^{t}(\Omega)} \leq C_{7}\|g\|_{W^{2-s, q^{\prime}}(\Omega)} \quad \forall g \in W^{2-s, q^{\prime}}(\Omega)
$$

If $f \in L^{r / 2}(\Omega)$ and $g \in W^{2-s, q^{\prime}}(\Omega)$ then Hölder's inequality yields

$$
\left|\int_{\Omega} f g \mathrm{~d} x\right| \leq\|f\|_{L^{r / 2}(\Omega)}\|g\|_{L^{t}(\Omega)} \leq\|f\|_{L^{r / 2}(\Omega)} C_{7}\|g\|_{W^{2-s, q^{\prime}}(\Omega)} .
$$

Thus $f \in W^{s-2, q}(\Omega)$ and (6.6) holds with $C_{6} \geq C_{7}$. Suppose now that $(2-s) q^{\prime}<m$. Put $\tau=m q^{\prime} /\left[m-(2-s) q^{\prime}\right]$. According to Lemma 2.2 there is a constant C_{8} such that

$$
\begin{equation*}
\|g\|_{L^{\tau}(\Omega)} \leq C_{8}\|g\|_{W^{2-s, q^{\prime}}(\Omega)} \quad \forall g \in W^{2-s, q^{\prime}}(\Omega) \tag{6.7}
\end{equation*}
$$

Clearly,

$$
\begin{gathered}
t=\frac{r / 2}{r / 2-1}=\frac{(m q) /(2 m-2 s q)}{(m q) /(2 m-2 s q)-1}=\frac{m q}{m q-2 m+2 s q}, \\
\tau=\frac{m q^{\prime}}{m-(2-s) q^{\prime}}=\frac{m q /(q-1)}{m-(2-s) q /(q-1)}=\frac{m q}{m q-m-(2-s) q} .
\end{gathered}
$$

Thus $\tau \geq t$ if and only if $m+(2-s) q \geq 2 m-2 s q$, i.e. if $(2+s) q \geq m$. Since $q^{\prime}<m /(2-s)$ we have

$$
q=\frac{q^{\prime}}{q^{\prime}-1}>\frac{m /(2-s)}{m /(2-s)-1}=\frac{m}{m-2+s} .
$$

So, $q \geq m /(2+s)$ by assumptions. Therefore $\tau \geq t$. Thus there is a constant C_{9} such that

$$
\|g\|_{L^{t}(\Omega)} \leq C_{9}\|g\|_{L^{\tau}(\Omega)} \quad \forall g \in L^{\tau}(\Omega)
$$

If $f \in L^{r / 2}(\Omega)$ and $g \in W^{2-s, q^{\prime}}(\Omega)$ then Hölder's inequality and (6.7) yield

$$
\begin{aligned}
\left|\int_{\Omega} f g \mathrm{~d} x\right| \leq & \|f\|_{L^{r / 2}(\Omega)}\|g\|_{L^{t}(\Omega)} \leq C_{9}\|f\|_{L^{r / 2}(\Omega)}\|g\|_{L^{\tau}(\Omega)} \\
& \leq C_{8} C_{9}\|f\|_{L^{r / 2}(\Omega)}\|g\|_{W^{2-s, q^{\prime}}(\Omega)}
\end{aligned}
$$

Thus $f \in W^{s-2, q}(\Omega)$ and (6.6) holds with $C_{6} \geq C_{8} C_{9}$. We have proved (6.6) for $s<2$. Using (6.2), (6.6) and (6.4)

$$
\begin{gathered}
\|A(\mathbf{u}, \mathbf{u})-A(\mathbf{v}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq C_{1} C_{2} m\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{u}\|_{W^{s, q}(\Omega)} \\
\quad+\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{W^{s-2, q}(\Omega)} \leq C_{1} C_{2} m\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{u}\|_{W^{s, q}(\Omega)} \\
\quad+C_{6}\|(|\mathbf{u}|-|\mathbf{v}|) \mathbf{v}\|_{L^{r / 2}(\Omega)} \leq C_{1} C_{2} m\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{u}\|_{W^{s, q}(\Omega)} \\
\quad+C_{6} C_{4}^{2} m^{2}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} \\
\leq\left(C_{1} C_{2} m+\quad+C_{6} C_{4}^{2} m^{2}\right)\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\left(\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|\mathbf{v}\|_{W^{s, q}(\Omega)}\right) .
\end{gathered}
$$

Lemma 6.4. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1 \leq s<\infty$ and $1<q<\infty$. For $\mathbf{u}, \mathbf{v} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$ define

$$
B(\mathbf{u}, \mathbf{v}):=(\mathbf{u} \cdot \nabla) \mathbf{v}
$$

Suppose that one of the following conditions is satisfied:
(1) $1<s$ and $q>m /(s+1)$.
(2) $s=1, q>2 m /(m+1)$. If $m /(m-1)<q<m$ suppose that $q \geq m / 2$.

Then there exists a positive constant C such that the following holds: If $\mathbf{u}, \mathbf{v} \in$ $W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then $B(\mathbf{u}, \mathbf{v}) \in W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|B(\mathbf{u}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq C\|\mathbf{u}\|_{W^{s, q}(\Omega)}\|\mathbf{v}\|_{W^{s, q}(\Omega)} \tag{6.8}
\end{equation*}
$$

$$
\|B(\mathbf{u}, \mathbf{u})-B(\mathbf{v}, \mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq C\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\left(\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|\mathbf{v}\|_{W^{s, q}(\Omega)}\right)
$$

Proof. Suppose first that $s>1$ and $q>m /(s+1)$. Clearly, $\min (s, s-1)>s-2$. Moreover, $s+(s-1)-(s-2)=s+1>m / q$. According to Proposition 7.1 there is a constant C such that (6.8) holds.

Suppose now that $s=1$. Put $q^{\prime}=q /(q-1)$. Suppose first that $q \geq m$. According to Lemma 2.2 there exist $r \in\left(q^{\prime}, \infty\right)$ and a constant C_{1} such that

$$
\begin{equation*}
\|g\|_{L^{r}(\Omega)} \leq C_{1}\|g\|_{W^{1, q^{\prime}}(\Omega)} \quad \forall g \in W^{1, q^{\prime}}(\Omega) \tag{6.9}
\end{equation*}
$$

Since $1 / q+1 / q^{\prime}=1$ we have $1 / q+1 / r<1$. Thus there exists $t \in(1, \infty)$ such that $1 / q+1 / r+1 / t=1$. According to Lemma 2.2 there is a constant C_{2} such that

$$
\begin{equation*}
\|f\|_{L^{t}(\Omega)} \leq C_{2}\|f\|_{W^{1, q}(\Omega)} \quad \forall f \in W^{1, q}(\Omega) \tag{6.10}
\end{equation*}
$$

If $h \in L^{q}(\Omega), g \in W^{1, q^{\prime}}(\Omega)$ and $f \in W^{1, q}(\Omega)$ then Hölder's inequality forces

$$
\left|\int_{\Omega} f h g \mathrm{~d} x\right| \leq\|f\|_{L^{t}(\Omega)}\|h\|_{L^{q}(\Omega)}\|g\|_{L^{r}(\Omega)} \leq C_{1} C_{2}\|f\|_{W^{1, q}(\Omega)}\|h\|_{L^{q}(\Omega)}\|g\|_{W^{1, q^{\prime}}(\Omega)}
$$

So, $f h \in W^{-1, q}(\Omega)$ and

$$
\begin{equation*}
\|f h\|_{W^{-1, q}(\Omega)} \leq C_{1} C_{2}\|f\|_{W^{1, q}(\Omega)}\|h\|_{L^{q}(\Omega)} \tag{6.11}
\end{equation*}
$$

If $\mathbf{u}, \mathbf{v} \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then $B(\mathbf{u}, \mathbf{v}) \in W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right)$ and (6.8) holds with $C \geq$ $C_{1} C_{2} m^{2}$.

Suppose now that $s=1$ and $q<m$. Put $t:=m q /(m-q)$. According to Lemma 2.2 there exists a constant C_{2} such that (6.10) hods. Since $q>2 m /(m+1)$ we have

$$
\frac{1}{q}+\frac{1}{t}=\frac{1}{q}+\frac{m-q}{m q}<\frac{m+1}{2 m}+\frac{m-2 m /(m+1)}{2 m^{2} /(m+1)}=\frac{m+1}{2 m}+\frac{m+1-2}{2 m}=1
$$

Therefore there is $r \in(1, \infty)$ such that $1 / q+1 / t+1 / r=1$. Hölder's inequality forces

$$
\begin{equation*}
\left|\int_{\Omega} f h g \mathrm{~d} x\right| \leq\|f\|_{L^{t}(\Omega)}\|h\|_{L^{q}(\Omega)}\|g\|_{L^{r}(\Omega)} \tag{6.12}
\end{equation*}
$$

Suppose first that $q^{\prime}=q /(q-1) \geq m$. According to Lemma 2.2 there exists a constant C_{1} such that (6.9) holds. Suppose now that $q^{\prime}<m$. Then $q=q^{\prime} /\left(q^{\prime}-1\right)>$ $m /(m-1)$. So, $q \geq m / 2$ by assumption. Thus

$$
\frac{1}{r}-\frac{m-q^{\prime}}{m q^{\prime}}=1-\frac{1}{q}-\frac{1}{t}-\frac{m-q /(q-1)}{m q /(q-1)}=1-\frac{1}{q}-\frac{m-q}{m q}-\frac{m q-m-q}{m q}
$$

$$
=\frac{m q-m-m+q-m q+m+q}{m q}=\frac{2 q-m}{m q} \geq 0 .
$$

Hence $r \leq m q^{\prime} /\left(m-q^{\prime}\right)$. According to Lemma 2.2 there exists a constant C_{1} such that (6.9) holds. According to (6.12), (6.9) and (6.10)

$$
\left|\int_{\Omega} f g h \mathrm{~d} x\right| \leq\|f\|_{L^{t}(\Omega)}\|h\|_{L^{q}(\Omega)}\|g\|_{L^{r}(\Omega)} \leq C_{1} C_{2}\|f\|_{W^{1, q}(\Omega)}\|h\|_{L^{q}(\Omega)}\|g\|_{W^{1, q^{\prime}}(\Omega)} .
$$

So, if $f \in W^{1, q}(\Omega)$ and $h \in L^{q}(\Omega)$, then $f h \in W^{-1, q}(\Omega)$ and (6.11) holds. If $\mathbf{u}, \mathbf{v} \in$ $W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)$ then $B(\mathbf{u}, \mathbf{v}) \in W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right)$ and (6.8) holds with $C \geq C_{1} C_{2} m^{2}$.

Clearly

$$
\begin{gathered}
\|B(\mathbf{u}, \mathbf{u})-B(\mathbf{v}, \mathbf{v})\|_{W^{s-2, q}(\Omega)}=\|B(\mathbf{u}-\mathbf{v}, \mathbf{u})+B(\mathbf{v}, \mathbf{u}-\mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq \\
\|B(\mathbf{u}-\mathbf{v}, \mathbf{u})\|_{W^{s-2, q}(\Omega)}+\|B(\mathbf{v}, \mathbf{u}-\mathbf{v})\|_{W^{s-2, q}(\Omega)} \leq \\
C\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{u}\|_{W^{s, q}(\Omega)}+C\|\mathbf{v}\|_{W^{s, q}(\Omega)}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)} .
\end{gathered}
$$

Theorem 6.5. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1 \leq$ $s<\infty$ and $1<q<\infty$. Suppose that one of the following conditions is satisfied:
(1) $m \leq 4, s=1$ and $q=2$.
(2) $\Omega \subset \mathbb{R}^{2}, s=1$ and $4 / 3<q<4$.
(3) $\Omega \subset \mathbb{R}^{3}, s=1$ and $3 / 2<q<3$.
(4) $\partial \Omega$ is of class $\mathcal{C}^{1}, s=1$ and $q>2 m /(m+1)$. If $m /(m-1)<q<m$ then $q \geq m / 2$.
(5) $\partial \Omega$ is of class $\mathcal{C}^{k, 1}$ with $k \in N, 1<s \leq k+1$ and $q>m /(s+1)$.

Let $0 \leq \lambda, a, b, \beta<\infty$. If $s>2$ or $q \leq m / 3$ suppose that $a=0$. If $m=3, s=1$ and $q<6 / 5$ suppose that $a=0$. Then there exist $\delta, \epsilon, C \in(0, \infty)$ such that the following holds: If $\mathbf{f} \in W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right), \chi \in W^{s-1, q}(\Omega)$ and $\mathbf{g} \in W^{s-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfy

$$
\begin{equation*}
\|f\|_{W^{s-2, q}(\Omega)}+\|\chi\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}\|_{W^{s-1 / q, q}(\partial \Omega)}<\delta \tag{6.13}
\end{equation*}
$$

then there exists a solution $(\mathbf{u}, p) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ of (1.3), (1.4) if and only if (5.2) holds. Moreover, there is a unique solution satisfying

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{s, q}(\Omega)}<\epsilon \tag{6.14}
\end{equation*}
$$

and (5.3). If (\mathbf{u}, p) is a solution of (1.3), (1.4) satisfying (6.14) and (5.3) then $\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|p\|_{W^{s-1, q}(\Omega)} \leq C\left(\|\mathbf{f}\|_{W^{s-2, q}(\Omega)}+\|\chi\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}\|_{W^{s-1 / q, q}(\partial \Omega)}\right)$.
Proof. If $(\mathbf{u}, p) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ is a solution of (1.3), (1.4), then (5.2) holds by Lemma 5.1.

Define

$$
L(\mathbf{u}):=a|\mathbf{u}| \mathbf{u}+b(\mathbf{u} \cdot \nabla) \mathbf{u} .
$$

According to Lemma 6.3 and Lemma 6.4 there is a constant C_{1} such that

$$
\begin{gathered}
\|L \mathbf{u}\|_{W^{s-2, q}(\Omega)} \leq C_{1}\|\mathbf{u}\|_{W^{s, q}(\Omega)}^{2} \\
\|L \mathbf{u}-L \mathbf{v}\|_{W^{s-2, q}(\Omega)} \leq C_{1}\|\mathbf{u}-\mathbf{v}\|_{W^{s, q}(\Omega)}\left(\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|\mathbf{v}\|_{W^{s, q}(\Omega)}\right)
\end{gathered}
$$

for all $\mathbf{u}, \mathbf{v} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right)$. (If $m \leq 4, s=1$ and $q=2$ then $2 m /(m+1)<2=q$ and $m / 2 \leq 2=q$. If $m=2$ and $4 / 3<q<4$ then $2 m /(m+1)=4 / 3<q$ and $m /(m-1)=2=m$. If $m=3, s=1$ and $3 / 2<q<3$ then $2 m /(m+1)=$ $6 / 4=3 / 2<q$ and $m / 2=3 / 2<q$. If $m=3,1<s<2$ and $q>m /(s+1)$
then $q>3 /(s+1)=6 /(2 s+2)>6 /(3+2 s)$. If $m \leq 3$ and $s=1$ then $q>$ $1 \geq m /(2+s)$. If $m=4, s=1$ and $q=2$ then $m /(2+s)=4 / 3<2=q$. If $s=1$ and $m /(m-2+s)<q<m / s$, then $m /(m-1)<q<m$ and therefore $q \geq m / 2>m /(2+s)$.)

According to Theorem 5.4 there is a positive constant C_{2} such that the following holds: If $\mathbf{f} \in W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right), \chi \in W^{s-1, q}(\Omega)$ and $\mathbf{g} \in W^{s-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfy (5.2) then there is a unique solution $(\mathbf{u}, p) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ of (1.1), (1.4) satisfying (5.3). Moreover,

$$
\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|p\|_{W^{s-1, q}(\Omega)} \leq C_{2}\left(\|\mathbf{f}\|_{W^{s-2, q}(\Omega)}+\|\chi\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}\|_{W^{s-1 / q, q}(\partial \Omega)}\right) .
$$

Put

$$
\epsilon:=\frac{1}{4\left(C_{1}+1\right)\left(C_{2}+1\right)}, \quad \delta:=\frac{\epsilon}{2\left(C_{2}+1\right)}
$$

If $(\mathbf{u}, p) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ is a solution of (1.3), (1.4) satisfying (6.14) and (5.3), and $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ is a solution of

$$
\begin{array}{r}
-\Delta \tilde{\mathbf{u}}+\lambda \tilde{\mathbf{u}}+a|\tilde{\mathbf{u}}| \tilde{\mathbf{u}}+b(\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}}+\nabla \tilde{p}=\tilde{\mathbf{f}}, \nabla \cdot \tilde{\mathbf{u}}=\tilde{\chi} \quad \text { in } \Omega \\
\tilde{\mathbf{u}}+\beta \int_{\Omega} \tilde{\mathbf{u}} \mathrm{d} x=\tilde{\mathbf{g}} \quad \text { on } \partial \Omega, \quad \int_{\Omega} \tilde{p} \mathrm{~d} x=0
\end{array}
$$

and $\|\tilde{\mathbf{u}}\|_{W^{s, q}(\Omega)}<\epsilon$, then

$$
\begin{gathered}
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{s, q}(\Omega)}+\|p-\tilde{p}\|_{W^{s-1, q}(\Omega)} \leq C_{2}\left(\|\mathbf{f}-\tilde{\mathbf{f}}\|_{W^{s-2, q}(\Omega)}+\|\chi-\tilde{\chi}\|_{W^{s-1, q}(\Omega)}\right. \\
\left.\quad+\|\mathbf{g}-\tilde{\mathbf{g}}\|_{W^{s-1 / q, q}(\partial \Omega)}+\|L \mathbf{u}-L \tilde{\mathbf{u}}\|_{W^{s-2, q}(\Omega)}\right) \leq C_{2}\left(\|\mathbf{f}-\tilde{\mathbf{f}}\|_{W^{s-2, q}(\Omega)}\right. \\
\left.\quad+\|\chi-\tilde{\chi}\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}-\tilde{\mathbf{g}}\|_{W^{s-1 / q, q}(\partial \Omega)}+C_{1} 2 \epsilon\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{s, q}(\Omega)}\right) \\
\leq C_{2}\left(\|\mathbf{f}-\tilde{\mathbf{f}}\|_{W^{s-2, q}(\Omega)}+\|\chi-\tilde{\chi}\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}-\tilde{\mathbf{g}}\|_{W^{s-1 / q, q}(\partial \Omega)}\right)+\frac{1}{2}\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{s, q}(\Omega)} .
\end{gathered}
$$

Thus

$$
\begin{gathered}
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{s, q}(\Omega)}+\|p-\tilde{p}\|_{W^{s-1, q}(\Omega)} \\
\leq 2 C_{2}\left(\|\mathbf{f}-\tilde{\mathbf{f}}\|_{W^{s-2, q}(\Omega)}+\|\chi-\tilde{\chi}\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}-\tilde{\mathbf{g}}\|_{W^{s-1 / q, q}(\partial \Omega)}\right)
\end{gathered}
$$

This gives the uniqueness of a solution of (1.3), (1.4) satisfying (6.14) and (5.3). For $\tilde{\mathbf{u}} \equiv 0, \tilde{p} \equiv 0, \tilde{\mathbf{f}} \equiv 0, \tilde{\chi} \equiv 0, \tilde{\mathbf{g}} \equiv 0$ we have

$$
\|\mathbf{u}\|_{W^{s, q}(\Omega)}+\|p\|_{W^{s-1, q}(\Omega)} \leq 2 C_{2}\left(\|\mathbf{f}\|_{W^{s-2, q}(\Omega)}+\|\chi\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}\|_{W^{s-1 / q, q}(\partial \Omega)}\right)
$$

Denote $E:=\left\{\mathbf{u} \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) ;\|\mathbf{u}\|_{W^{s, q}(\Omega)} \leq \epsilon\right\}$. Choose $\mathbf{f} \in W^{s-2, q}\left(\Omega ; \mathbb{R}^{m}\right)$, $\chi \in W^{s-1, q}(\Omega)$ and $\mathbf{g} \in W^{s-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (6.13) and (5.2). For a fixed $\mathbf{v} \in E$ there exists a unique solution $\left(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right) \in W^{s, q}\left(\Omega ; \mathbb{R}^{m}\right) \times W^{s-1, q}(\Omega)$ of

$$
\begin{gathered}
-\Delta \mathbf{u}^{\mathbf{v}}+\lambda \mathbf{u}^{\mathbf{v}}+\nabla p^{\mathbf{v}}=\mathbf{f}-L(\mathbf{v}), \quad \nabla \cdot \mathbf{u}^{\mathbf{v}}=\chi \quad \text { in } \Omega \\
\mathbf{u}^{\mathbf{v}}+\beta \int_{\Omega} \mathbf{u}^{\mathbf{v}} \mathrm{d} x=\mathbf{g} \quad \text { on } \partial \Omega, \quad \int_{\Omega} p^{\mathbf{v}} \mathrm{d} x=0
\end{gathered}
$$

Clearly,

$$
\begin{aligned}
\left\|\mathbf{u}^{\mathbf{v}}\right\|_{W^{s, q}(\Omega)} \leq C_{2}\left(\|\mathbf{f}\|_{W^{s-2, q}(\Omega)}\right. & \left.+\|L \mathbf{v}\|_{W^{s-2, q}(\Omega)}+\|\chi\|_{W^{s-1, q}(\Omega)}+\|\mathbf{g}\|_{W^{s-1 / q, q}(\partial \Omega)}\right) \\
<C_{2} \delta+C_{2} C_{1}\|\mathbf{v}\|_{W^{s, q}(\Omega)}^{2} & =\frac{C_{2} \epsilon}{2\left(C_{2}+1\right)}+C_{2} C_{1} \epsilon \frac{1}{4\left(C_{1}+1\right)\left(C_{2}+1\right)} \leq \epsilon
\end{aligned}
$$

So $\mathbf{u}^{\mathbf{v}} \in E$. If $\mathbf{v}, \mathbf{w} \in E$ then

$$
\left\|\mathbf{u}^{\mathbf{v}}-\mathbf{u}^{\mathbf{w}}\right\|_{W^{s, q}(\Omega)} \leq C_{2}\|L \mathbf{v}-L \mathbf{w}\|_{W^{s-2, q}(\Omega)}
$$

$$
\leq C_{2} C_{1}\|\mathbf{w}-\mathbf{v}\|_{W^{s, q}(\Omega)}\left(\|\mathbf{w}\|_{W^{s, q}(\Omega)}+\|\mathbf{v}\|_{W^{s, q}(\Omega)}\right) \leq 2 C_{2} C_{1} \epsilon\|\mathbf{w}-\mathbf{v}\|_{W^{s, q}(\Omega)}
$$

But $2 C_{2} C_{1} \epsilon<1$. Therefore Banach's fixed point theorem forces that there exists $\mathbf{v} \in E$ such that $\mathbf{u}^{\mathbf{v}}=\mathbf{v}$. (See [8, Satz 1/24].) For such \mathbf{v} the pair $\left(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right)$ is a solution of (1.3), (1.4).

7. Appendix

Proposition 7.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary. Let $0<s(1), s(2)<\infty, \min (s(1), s(2)) \geq s>-\infty$ and $1<p<\infty$. Suppose that $s(1)+s(2)-s>m / p$. Then there exists a positive constant C such that

$$
\|f g\|_{W^{s, p}(\Omega)} \leq C\|f\|_{W^{s(1), p}(\Omega)}\|g\|_{W^{s(2), p}(\Omega)}
$$

for all $f \in W^{s(1), p}(\Omega), g \in W^{s(2), p}(\Omega)$.
(See [24, Lemma 4.3].)

8. Declarations

- Funding: The work was supported by RVO: 67985840.
- Conflict of interest: The author discloses financial or non-financial interests that are directly or indirectly related to this paper.

References

[1] Adams R. A. and Fournier, J. L. (2003), Sobolev Spaces, Elsevier, Oxford.
[2] Adams, D. R. and Hedberg, L. I. (1996), Function spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften 314, Springer-Verlag, Berlin Heidelberg.
[3] Agranovich, M. S. (2015), Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Switzerland.
[4] Amann, H. and Escher, J. (2009), Analysis III, Birkhäuser, Basel - Boston - Berlin.
[5] Amrouche, Ch. and Girault, V. (1994), "Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension", Czechoslovak Mathematical Journal 44, 109-140.
[6] Boyer, F. and Fabrie, P. (2013), Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York.
[7] Devore, R. A. and Sharpley, R. C. (1993), "Besov spaces on domains in $R^{d "}$, Transactions of the Mathematical Society 335, 843-864.
[8] Dobrowolski, M. (2006), Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und elliptische Differentialgleichungen,, Springer-Verlag Berlin Heidelberg.
[9] Farwig, R. and Sohr, H. (1994), "Generalized resolvent estimates for the Stokes system in bounded and unbounded domains"', Journal of the Mathematical Society of Japan 46, 607643.
[10] Fröhlich, A. (2007), "The Stokes operator in weighted L^{q}-spaces II: weighted resolvent estimates and maximal L^{p}-regularity", Mathematische Annalen 339, 287-316.
[11] Galdi, G.P., Simader, G. and Sohr, H. (1994), "On the Stokes problem in Lipschitz domains", Annali di Matematica Pura et Applicata 167, 147-163.
[12] Giga, Y. (1981), "Analycity of the semigroup generated by the Stokes operator in L_{r} spaces", Mathematische Zeitschrift 178, 297-329.
[13] Grisvard, P. (2011), Elliptic Problems in Nonsmooth Domains, SIAM, Philadelphia.
[14] Grosan, T., Kohr, M. and Wendland, W. L. (2015), "Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains", Mathematical Methods in the Applied Sciences 38, 3615-3628.
[15] Gutt, R. and Grosan, T. (2015), "On the lid-driven problem in a porous cavity: A theoretical and numerical approach", Applied Mathematics and Computation 266, 1070-1082.
[16] Jerison, D. and Kenig, C. E. (1995), "The inhomogeneus Dirichlet problem in Lipschitz domains", Journal of Functional Analysis 130, 161-219.
[17] Kohr, M., Lanza de Cristoforis and M., Wendland, W. L. (2015), "Poisson problems for semilinear Brinkman systems on Lipschitz domains in R^{n} ", Zeitschrift für Angewandte Mathematik und Physik 66, 833-864.
[18] Kohr, M., Medková, D. and Wendland, W. L. (2017), "On the Oseen-Brinkman flow around an $(m-1)$-dimensional solid obstacle", Monatshefte für Mathematik 183, 269-302.
[19] Kufner, A., John, O. and Fučík, S. (1977), Function Spaces, Academia Prague.
[20] Lieb, E. H. and Loss, M. (1997), Analysis, AMS, USA.
[21] Medková, D. (2016), "Bounded solutions of the Dirichlet problem for the Stokes resolvent system", Complex Variables and Elliptic Equations 61, 1689-1715.
[22] Medková, D. (2018), "The Robin problem for the Brinkman system and for the Darcy-Forchheimer-Brinkman system", Zeitschrift für Angewandte Mathematik und Physik 69, article 132.
[23] Medková, D. (2018), The Laplace equation, Springer, Cham.
[24] Medková, D. (2023), "One Navier's problem for the Brinkman system", Annali dell' Univiversitá Ferrara, online first, DOI: 10.1007/s11565-023-00458-5.
[25] Mitrea, D. and Mitrea, M. (2008), "The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains", Communications on Pure and Applied Analysis 7, 1295-1333.
[26] Mitrea and M., Wright, M. (2012), Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque 344, Paris.
[27] Müller, V. (2007), Spectral Theorey of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory Advances and Applications, Birkhäuser, Basel.
[28] Nečas, J. (1967), Les méthodes directes en théorie des équations élliptiques, Academia, Prague.
[29] Papuc, I. (2021), "On a Dirichlet problem for the Darcy-Forchheimer-Brinkman system with application to lid-driven porous cavity flow with internal square block", Applied Mathematics and Computation 402, article no. 125906.
[30] Schechter, M. (2002), Principles of Functional Analysis, American Mathematical Society, Providence, Rhode Island.
[31] Shibata Y. (2013), "Generalized resolvent estimates of the Stokes equations with first order boundary conditions in a general domain", Journal of Mathematical Fluid Mechanics 15, 1-40.
[32] Tartar, L. (2007), An Introduction to Sobolev Spaces and Interpolation Spaces, SpringerVerlag, Berlin Heidelberg.
[33] Taylor, A. E. (1967), Introduction to Functional Analysis, John Wiley \& Sons, New York.
[34] Triebel, H. (1972), Höhere Analysis, VEB Deutscher Verlag der Wissenschaften, Berlin.
[35] Triebel, H. (1978), Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin.
[36] Triebel, H. (1983), Theory of function spaces, Birkhäuser, Basel - Boston - Stuttgart.
[37] Triebel, H. (2006), Theory of function spaces III, Birkhäuser,Basel - Boston - Stuttgart.
[38] Varnhorn, W. (1994), The Stokes equations, Akademie Verlag, Berlin.
[39] Yosida, K. (1965), Functional Analysis, Springer-Verlag, Berlin.
Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic

E-mail address: medkova@math.cas.cz

[^0]: 2000 Mathematics Subject Classification. 35Q35.
 Key words and phrases. Brinkman system; Dirichlet problem; Darcy-Forchheimer-Brinkman system; boundary layer potentials.

 The work was supported by Czech Academy of Sciences RVO: 67985840.

[^1]: Article History
 Received : 29 October 2022; Revised : 20 November 2023; Accepted : 11 December 2023; Published : 26 December 2023
 To cite this paper
 Dagmar Medková (2023). The Dirichlet Problem for the Brinkman System in Sobolev Spaces. International Journal of Mathematics, Statistics and Operations Research. 3(2), 327-346.

